MAHARASHTRA AGRICULTURAL UNIVERSITIES

Revised Course Curriculum and Syllabus with Semester Wise Layout

As per Recommendations of V Dean's Committee ICAR, New Delhi

For

B. Tech. (Agricultural Engineering)

Degree Program

Implemented in State Agricultural Universities of Maharashtra

From the

Academic Year 2017 - 18

MAHARASHTRA AGRICULTURE UNIVERSITIES

Revised Course Curriculum and Syllabus

(As per the recommendation of Vth Deans' Committee-ICAR New Delhi)

Undergraduate – B. Tech. (Agricultural Engineering)

CONTENTS

Sr. No.	Торіс	Pages
1	Distribution of credits in odd and even semester including Core	
	Courses, Non Gradial Courses, Student READY programme and	3
	Electives	·
2	Semester wise Distribution of Core Courses, Non Gradial Courses,	
	Student READY programme and Electives	4 - 7
3	Semester wise Syllabus and Teaching Schedule	8
4	Semester I	8 - 35
5	Semester II	36 - 66
6	Semester III	67 - 91
7	Semester IV	92-113
8	Semester V	114 - 140
9	Semester VI	141 - 168
10	Semester VII	169
11	Semester VIII	170 - 189

Distribution of credits in odd and even semesters including Core Courses, Non Gradial Courses, Student READY programme and Electives

Monsoon Session		Summer	r Session
Semester	Credits	Semester	Credits
Ι	10 + 11 = 21	II	11 + 12 = 23
	1 + 0 = 1*		0 + 2 = 02*
III	12 + 09 = 21	IV	12 + 08 = 20
	0 + 2 = 02 #@		$0 + 5 = 05^{@}$
V	13 + 09 = 22	VI	12 + 09 = 21
	$0 + 2 = 02^{\#@}$		$0 + 5 = 05^{@}$
VII	$00 + 20 = 20^{@}$	VIII	6 + 3 = 09
			$00 + 11 = 11^{@}$
Core & Common	35 + 29 = 64	Core & Common	35 + 29 = 64
Non Gradial	1 + 0 = 01*	Non Gradial	0 + 2 = 02*
Student READY	00 + 22 = 22 #@	Student READY	$00 + 21 = 21^{@}$
		Elective	6 + 3 = 09**
Total	36 + 51 = 87		41 + 55 = 96
Grand Total		183 Credits	

- ➤ * Non Gradial Credits
- ➤ # Only 2 Credits of educational tour gradial
- > @ Total 43 credits of student READY Programme
- ➤ ** Credits of Elective courses

Evaluation :

OGPA	Division
5.000 - 5.999	Pass
6.000 - 6.999	II division
7.000 - 7.999	I division
8.000 and above	I division with distinction

- ➢ GPA = Total points scored / Total credits (for 1 semester)
- \blacktriangleright CGPA = \sum Total points scored / Course credits
- > OGPA = \sum Total points scored (after excluding failure points) / Course credits
- \blacktriangleright % of Marks = OGPA x 100/10

Semester wise distribution of Core Courses, Non Gradial Courses, Student READY

programme and Electives

Semester I

Sr.	Course No.	Title	Credits		
No.					
Core	Courses				
1	BS-MATH 111	Engineering Mathematics-I	3 (2+1)		
2	BS-PHY 111	Engineering Physics	2 (1+1)		
3	BS-COMP 111	Computer Programming and Data Structures	2 (1+1)		
4	AS-SS 111	Principles of Soil Science	2 (1+1)		
5	FMPE 111	Engineering Drawing	2 (0+2)		
6	FMPE 112	Workshop Practice	1 (0+1)		
7	PFE 111	Thermodynamics	2 (1+1)		
8	REE 111	Engineering Chemistry	2 (1+1)		
9	FS 111	Engineering Mechanics	3 (2+1)		
Com	mon Courses				
10	AS-EXTN 111	Communication Skills and Personality Development	2 (1+1)		
Non	Non Gradial Compulsory Courses				
11	DEG 111*	Democracy, Elections and Good Governance	1*(1+0)		
	Total Credit I :				

Semester II

Sr.	Course No.	Title	Credits		
No.					
Core	Courses				
1	BS-MATH 122	Engineering Mathematics-II	3 (2+1)		
2	BS-COMP 122	Web Designing and Internet Applications	2 (0+2)		
3	AS-STAT 121	Statistical Methods in Engineering	2 (1+1)		
4	AS-AGRO 121	Principles of Agronomy	2 (1+1)		
5	AS-HORT 121	Principles of Horticultural Crops and Plant Protection	2 (1+1)		
6	FMPE 123	Workshop Technology	2 (1+1)		
7	SWCE - 121	Surveying and Levelling	3 (1+2)		
8	PFE-122	Heat and Mass Transfer	2 (1+1)		
9	REE-122	Electrical Machines and Power Utilization	3 (2+1)		
10	FS - 122	Strength of Materials	2 (1+1)		
Non	Non Gradial Compulsory Courses				
11	PHEY 121*	Physical Education and Yoga	1*(0+1)		
12	NSS 121*	National Service Scheme	1*(0+1)		
		Total Credit II:	23 (11+12) 2*(0+2)		

* Non Gradial courses

Semester III

Sr.	Course No.	Title	Credits
No.			
Core (Courses		
1	BS-MATH 233	Engineering Mathematics-III	3 (2+1)
2	FMPE 234	Farm Power and Automotive Engines	2 (1+1)
3	FMPE 235	Theory of Machines	2 (1+1)
4	SWCE 232	Soil Mechanics	2 (1+1)
5	SWCE 233	Watershed Hydrology	3 (2+1)
6	IDE 231	Fluid Mechanics and Open Channel Hydraulics	3 (2+1)
7	PFE 233	Engineering Properties of Agricultural Produce	2 (1+1)
8	FS 233	Theory of Structures	2 (1+1)
Comm	ion Courses		
9	AS-EXTN- 231	Entrepreneurship Development and Business Communication	2 (1+1)
Studer	nt READY Program	mme	
10	EDNT 231 ^{#@}	Educational Tour@ (During the semester break after 3rd semester)	2#@(0+2)
		Total Credit III:	21(12+9) 2 ^{#@} (0+2)

Only 1 educational tour Gradial. @ Student READY Programme

Semester IV

Sr.	Course No.	Title	Credits
No.			
Core	Courses		
1	BS-PHY 242	Applied Electronics & Instrumentation	2 (1+1)
2	FMPE 246	Tractor Systems and Controls	2 (1+1)
3	FMPE 247	Machine Design	2 (1+1)
4	SWCE 244	Soil & Water Conservation Engineering	3 (2+1)
5	IDE 242	Irrigation Engineering	3 (2+1)
6	PFE 244	Post Harvest Engineering of Cereals, Pulses and Oil Seeds	3 (2+1)
7	REE 243	Fundamentals of Renewable Energy Sources	3 (2+1)
8	FS 244	Building Construction and Cost Estimation	2 (1+1)
Stude	nt READY Prog	gramme	
9	GAE 241 [@]	In Plant Training – $I^{@}$ (4 weeks duration) to be implemented during semester break after IV semester	5 [@] (0+5)
		Total Credit IV:	20(12+8) 5 [@] (0+5)

@ Student READY Programme

Semester V

Sr.	Course No.	Title	Credits
No.			
Core	Courses		
1	FMPE-358	Farm Machinery and Equipment-I	2 (1+1)
2	FMPE 359	CAD Applications	1 (0+1)
3	FMPE 3510	Field Operation and Maintenance of Tractor & Farm Machinery	1 (0+1)
4	SWCE 355	Water Harvesting & Soil Conservation Structures	3 (2+1)
5	IDE-353	Ground Water Wells & Pumps	3 (2+1)
6	IDE 354	Drainage Engineering	3 (2+1)
7	PFE 355	Dairy & Food Engineering	3 (2+1)
8	REE 354	Renewable Power Sources	3 (2+1)
9	FS 355	Agricultural Structures, Storage Engineering & Environmental control	3 (2+1)
Stude	nt READY Pro	gramme	
10	EDNT 352#@	Educational Tour [@] (During the semester break after 5th semester)	2 (0+2)#@
		Total Credit V:	22(13+9)

Only 1 educational tour Gradial. (Should be considered in III Semester EDNT-231 only) @ Student READY Programme

-

Semester VI

Sr.	Course No.	Title	Credits
No.			
Core	Courses		
1	FMPE 3611	Farm Machinery and Equipment –II	2 (1+1)
2	FMPE 3612	Tractor & Farm Machinery Design	3 (2+1)
3	SWCE 366	Watershed Planning and Management	2 (1+1)
4	IDE 365	Canal Irrigation Management	2 (1+1)
5	IDE 366	Sprinkler and Micro Irrigation System	2 (1+1)
6	PFE 366	Post Harvest Engineering of Horticultural	2 (1+1)
		Crops	
7	PFE 367	Refrigeration and Air Conditioning	2 (1+1)
8	REE 365	Bio-energy Systems: Design and	3 (2+1)
		Applications	
9	AS-ESDM-361	Environmental science and Disaster	3 (2+1)
		Management	
Stud	ent READY Prog	ramme	
10	GAE 362 [@]	In Plant Training – II@ (4 weeks duration)	5 [@] (0+5)
		to be implemented during semester break	
		after VI semester	
		Total Credit VI:	21(12+9)
			5 [@] (0+5)

@ Student READY Programme

Semester VII

Sr.	Course No.	Title	Credits
No.			
Stud	ent READY Pr	ogramme	
1	GAE- 473 [@]	AI- Industrial Attachment/Internship	
	/ GAE- 474@	(10 Weeks) /	20(0+20)
		ELP- Experiential Learning on Campus-	
		(10 weeks)	
		OR	
1	GAE- 473 [@]	AI- Industrial Attachment/Internship	10(0+10)
		(10 Weeks)	
2	GAE- 474 [@]	ELP- Experiential Learning on Campus-	10(0+10)
		(10 weeks)	
		Total Credit VII:	20 [@] (0+20)

Semester VIII

Sr.	Course No.	Title	Credits
Electiv	e Courses **	· · · ·	
		GROUP A: FMPE, PFE, REE	
1	ELE- FMPE-481	Testing of Agricultural Equipment and Machinery	3 (1+2)
2	ELE-PFE-483	Food Packaging	3 (2+1)
3	ELE-REE-481	Photovoltaic Technology and Systems	3 (2+1)
		GROUP B : IDE, SWCE, FS	
1	ELE-IDE-482	Geo-informatics for Land and Water Management	3 (2+1)
2	ELE- SWCE-481	Floods and Control Measures	3 (2+1)
3	ELE- FS - 481	Greenhouse Structure for protected cultivation	3 (2+1)
Studen	t READY Programm	ne	
4	GAE- 485 [@]	Seminar	1 (0+1)
5	GAE- 486 [@]	12 weeks Project Planning & Report Writing- VIII sem.	10(0+10)
		Total Credit Points VIII:	9 (5+4)/(6+3) 11 [@] (0+11)
Acader	nic Status:		

@ Student READY Programme . ** Elective Courses

Syllabus and Teaching Schedule

SEMESTER : I

Course No: BS-MATH 111

Title: Engineering Mathematics – I

Semester: I (New)

Credit: 3 (2+1)

Syllabus

Theory

Matrices and its applications: Rank of a matrix, Inverse of Matrix by Gauss-Jordan method, Normal form, Applications: Consistency of linear system of equations; linear transformations, orthogonal transformations, Eigen values with properties and Eigen vectors, Cayley-Hamilton theorem(without proof), diagonalization of matrices, quadratic forms, nature of a quadratic form. **Differential calculus and its applications**: Expansions of functions by Maclaurin's and Taylor's

series; Indeterminate form.

Partial differentiation and its applications: Functions of two or more independent variables, partial derivatives, homogeneous functions and Euler's theorem, total derivatives: chain rule; differentiation of implicit functions, change of variables, Application: maxima and minima.

Integral calculus and its applications: Gamma and Beta functions, Volumes and Surface areas of revolution, double and triple integrals, change of order of integration, application of double and triple integrals.

Vector calculus and its applications: Scalar and Vector point functions, Derivative of vector function, vector differential operator Del, Gradient of a scalar point function, geometrical meaning of gradient, Applications of vector differentiation and gradient, Divergence and Curl of a vector point function and their physical interpretations, applications of divergence and curl, identities involving Del(without proof), second order differential operator(without proof); line integral, work done, surface and volume integrals, Green's, Stoke's, and Gauss divergence theorems (without proofs).

Practical

Applications of Matrices, Applications of Eigen values and Eigen vectors, Applications of Cayley-Hamilton theorem, diagonalization of matrices, quadratic forms, nature of a quadratic form, Applications of Taylor's and Maclaurin's series, Applications of Indeterminate forms, Applications of Partial differentiation, Maxima and minima, Applications of Beta and Gama functions, Tracing of Cartesian curves, Applications of Volume and surface revolution, Applications of Double and Triple Integrals, Applications: mass of lamina, centre of gravity, centre of pressure, moment of inertia, Applications of derivative of vector function, Gradient, Directional derivatives, divergence and curl, solenoidal and irrotational field, Applications of Line, surface and volume integrals, work done, Applications of Greens, Stokes and Gauss Divergence theorem.

Lecture No.	Topics to be covered	Weightages (%)
Matrices ar	nd its Applications	
1-9	Rank of Matrix	
	Inverse of Matrix by Gauss- Jordan	
	Reduction to normal form	
	Applications: Consistency of linear system of equations	
	Linear transformation	30%
	Orthogonal transformation	
	Eigen values and Eigen vectors	
	Properties of Eigen Values	
	Cayley Hamilton theorem(without proof)	
	Reduction to Diagonal form, quadratic form, nature of quadratic	
	form	
	Calculus and its Applications	
10-11	Maclaurin's series,	
	Taylor's series	
12-13	Indeterminate Forms: L'Hospital's Rule/ Cauchy Rule	
	Forms: $\frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty, 0 \times \infty, 0^0, 1^{\infty}, \infty^0$	
14-19	Partial Differentiation and its applications	2004
	Function of two or more independent variables	30%
	Partial derivatives	
	Homogeneous function & Euler's Theorem	
	Total derivative & Derivative of implicit function	
	Change of variable	
	Maxima and Minima	
Integral Ca	lculus and its Applications	
20-28	Gamma and Beta Function	
	Volume of solids of revolution	
	Surface areas of revolution	20%
	Double Integral: Definition, Evaluation	2070
	Change of order of integration – Cartesian form	
	Triple Integral: Definition, Evaluation	
Vector Cal	culus and its Applications	
29-31	Scalar and Vector point function	
	Derivative of vector function	
	Vector operator Del	
	Gradient of scalar point function, geometrical meaning of	
	gradient, Directional Derivative	
	Divergence and Curl of Vector point function	
	Physical interpretations of Divergence and Curl	
	Solenoidal and Irrotational field	20%
	Identities involving Del and second order differential	
	operator(without proof)	
32-34	Vector Integration - Line integral, work done, surface integral,	
	Green's Theorem (without proof)	
	Stoke's Theorem(without proof)	
	Volume integral	
	Gauss divergence theorem (without proof)	

Practical Exercises

Exercise No.	Торіс	
1	Applications of Matrices	
2	Applications of Eigen values and Eigen vectors	
3	Applications of Cayley-Hamilton theorem, diagonalization of matrices,	
	quadratic forms, nature of a quadratic form.	
4	Applications of Taylor's and Maclaurin's series	
5	Applications of Indeterminate forms	
6	Applications of Partial differentiation	
7	Maxima and minima	
8	Applications of Beta and Gama functions	
9	Tracing of Cartesian curves	
10	Applications: Volume and surface revolution	
11	Applications: To find area by double integral and to find volume of solids	
12	Applications mass of lamina, centre of gravity, centre of pressure, moment of	
	inertia	
13	Applications of Vector differentiation, Gradient, Directional derivative	
14	Applications of Divergence and Curl, solenoidal and irrotaional field	
15	Applications of Line integral-work done, surface and volume integrals	
16	Applications of Green's Theorem, Stoke's Theorem, Gauss divergence	
	theorem.	

Suggested Reading

Text Book

1. Dr. Shinde K. J. et.al., 2017; A Text Book of Agricultural Engineering Mathematics -I

Reference Books

- 1. Narayan Shanti, 2004; Differential Calculus. S. Chand and Co. Ltd. New Delhi.
- 2. Narayan Shanti, 2004; Integral Calculus. S. Chand and Co. Ltd. New Delhi.
- 3. Grewal B. S., 2015; Higher Engineering Mathematics. Khanna Publishers Delhi.(43rd Edition)
- 4. Narayan Shanti, 2004; A Text Book of Vector Calculus. S. Chand and Co. Ltd. New Delhi.
- 5. Narayan Shanti, 2004; A Text Book of Matrices. S. Chand and Co. Ltd. New Delhi.

Course No: BS-PHY 111 Semester: I (New)

UNIT	Topics to be covered	Book No.	Chapter No.	Weightage
	Magnetism	1	13	
	Classification of magnetic material:			
	Dia, Para and Ferromagnetism,			
	Langevin's theory of dia and Para			
Ι	magnetism. Curie-Weiss law			30%
	Surface Tension and Viscosity:	2	8	
	Molecular forces, Molecular theory,			
	Surface energy & tension, Pressure			
	difference across liquid surface,			
	Capillary rise method, Jaeger's method,			
	Viscosity & coefficient of viscosity,			
	Streamline & Turbulent flow, Reynold's			
	number, Poseuille's equation, Stoke's			
	Law & Terminal velocity			
	Semiconductor Physics:	2	60	
	Distinction between metals, Insulators &			
	Semiconductors. Intrinsic & Extrinsic			
	semiconductor, Effect of temp. on			
Π	semiconductor.			35%
	Superconductivity	3	11	
	Superconductivity, critical current			
	strength, Meissner effect, Isotope effect			
	& electron-Photon interaction, Type-I, II			
	superconductors, Applications.			
	Lasers	2	31	
	Spontaneous & stimulated emission,			
	Einstein A & B coefficients, Population			
	inversion, He-Ne & Ruby Lasers,			
	Concept of MASER			
III	Fiber Optics & Illumination	2	32	35%
	Optical fiber, Physical structure, Basic			
	theory, Types of modes, Input output			
	characteristics of optical fiber, Numerical			
	Aperture, Applications of fiber optics.			
	Laws of illumination, Luminous flux,	2	24	
	Luminous intensity, Candle power,			
	Brightness, transmission & reflection			
	coefficient.			
				100%

Practical Exercise:

- 1) To determine wavelength of Laser beam
- 2) To determine divergence of HE-Ne Laser
- 3) To find Numerical aperture of optical fiber
- 4) To set up the fiber optic analog and digital link
- 5) To find the frequency of AC supply using an electrical vibrator
- 6) To study induced emf as a function of velocity of magnet
- 7) To study phase relationship in LR circuit
- 8) To study LCR circuit
- 9) To determine Surface tension by capillary rise method
- 10) Determination of Surface tension by Jaeger's method
- 11) To determine Coefficient of Viscosity by Stokes method
- 12) Determination of Coefficient of Viscosity by Poiseuille's method
- 13) To study variation of thermo emf of Copper-Constantan thermo- couple with temp.
- 14) To determine energy band gap in semiconductor
- 15) To find wavelength of light by prism
- 16) To study the variation of magnetic field with distance along axis of a current carrying circular coil

Suggested readings

Text Books:

- 1) Solid state Physics Saxena B.S. and Gupta R.C., Pragati Prakasah, 16th Edition
- 2) Engineering Physics- R.K.Gaur and S.L. Gupta, Dhanpat Rai Pub.New Delhi 8th Edition
- 3) Modern Physics for Engineers S.P.Taneja, S.Chand Co. New Delhi , 10th Edition 2014

Reference Books:

- 1) Atomic Physics- J.B. Rajam, R.Chand New Delhi , 7th Edition 1999
- Fundamentals of Molecular Spectroscopy Colin Banwell, Mc Cash, Tata Mc Graw Hill, New Delhi,4th Edition
- 3) Elements of properties of matter D.S.Mathur
- 4) Optical state Physics and Fiber optics- Sarkar Sabir Kumar, S. Chand New Delhi
- 5) Elements of Spectroscopy- Gupta S.L. Sharma R.C., Pragati Prakashan, Meeruth
- 6) Fundamentals of Magnetism and Electricity Vasudeva D.N., S.Chand New Delhi
- 7) A Text Book of optics Brijlal Subramaniyam, S.Chand Co. New Delhi , 24th Edition

Course No.	: BS-COMP 111	Course Title	: Computer Programming and Data
			Structures
Semester:- I		Credits	: 2 (1+1)

Theory

Introduction to high level languages i.e. C Language, Primary data types and user defined data types, Variables, typecasting, Operators, Building and evaluating expressions, Standard library functions, Managing input and output, Decision making, Branching, Looping, Arrays, User defined functions, passing arguments and returning values, recursion, scope and visibility of a variable, String functions, Structures and union, Pointers, Stacks, Push/Pop operations, Queues, Insertion and deletion operations, Linked lists.

Practical

Familiarizing with Turbo C IDE; Building an executable version of C program; Debugging a C program; Developing and executing simple programs; Creating programs using decision making statements such as if, go to & switch; Developing program using loop statements while, do & for; Using nested control structures; Familiarizing with one and two dimensional arrays; Using string functions; Developing structures and union; Creating user defined functions; Using local, global & external variables.

Sr.No.	Unit	Торіс	Lecture No.	Weightage
1		Introduction to high level languages i.e.	1, 2	to topics
1		"C" language.	1, 2	
		Basic structure of C program, Character		
		set, Variables, Constants		30%
2	-	Data types: Primary data types and user	3,4	50%
-		defined data types, typecasting	.,	
3	I	Operators: Arithmetic, Logical,	4, 5	
		Relational, Building and evaluating	,	
		expressions, Standard library functions		
4		Managing input and output : Input/	5, 6	
		Output statement, scanf(), printf(),		
		getchar (), getch(), putchar()		30%
5		Decision making, Branching, Looping:-	7,8	
	II	Conditional statements: if, if-else,		
		nesting of if, if-ladder.		
		Looping statement: while(), do while(
) and for() –looping statements		
6		Arrays : One dimensional, two	9	
		dimensional and multi dimensional arrays		
7		Functions: Library Functions, User	10,11	
	III	defined functions, passing arguments and		20%
		returning values, recursion		

Teaching Schedule with weightages (%)

8		String functions:	12,13	
		<pre>strcat(), strlen(), strcpy(), strcmp() etc.</pre>		
9		Data structures: Structures, Union and	14	
		Pointers (Syntax and definition)		
10	IV	Stacks, Push/Pop operations, Queues, Insertion and deletion operations, Linked	15,16	20%
		lists.		
		Total Theory N	farks (40)	100%

Practical Exercises

Sr. No.	Name of the Experiment
1	Write a program to check odd or even number. Write a program to find the largest among two numbers.
2	Write a program to find the Area of Circle, by giving radius as input.
3	Write a program to find the square root of a given number. Write a program to find the roots of quadratic equation $AX^2+BX+C=0$
4	Write a program to find the right most digit of a given number.
5	Program to calculate the simple interest by giving, principal amount, rate of interest and period in months.
6	Write a program to convert number of days in to months & days.
7	Write a program to find the largest of three given numbers A, B, C.
8	Write a program to find the average/mean of given 10 numbers.
9	Write a program to print the following triangle. 1 12 123 1234
10	Write a program a program to generate the Fibonacci series up to given numbers N.
11	Write a program to print the given number in reverse order.
12	Write a program to find the sum of first fifty even numbers.
13	Write a program for addition, subtraction and multiplication of 3x3 matrix.
14	Write a program to arrange the given 10 numbers using selection sort method.
15	Write a program to determine if the given number is prime or not prime.
16	Write a program to find the factorial of a given number using function.

Suggested readings

Text and Reference books

Rajaraman V. 1985. Computer Oriented Numerical Methods. Prentice Hall of India. Pvt. Ltd., New Delhi.

Balagurusamy E. 1990. Programming in 'C'. Tata McGraw Hill Publishing Co. Ltd., 12/4 Asaf Ali Road, New Delhi.

Rajaraman V. 1995. Computer Programming in 'C'. Prentice Hall of India Pvt.Ltd., New Delhi.

Bronson G and Menconi S. 1995. A First Book of 'C' Fundamentals of 'C' Programming. Jaico Publishing House, New Delhi

Sahni S.. Data Structures, Algorithms and Applications in C++. University press (India) Pvt Ltd / Orient Longman Pvt. Ltd.

Michael T. Goodrich, R. Tamassia and D Mount. Data structures and Algorithms in C++. Wiley Student Edition, John Wiley and Sons.

Mark Allen Weiss. Data Structures and Algorithm Analysis in C++. Pearson Education.

Augenstein, Langsam and Tanenbaum. Data structures using C and C++. PHI/Pearson Education.

Drozdek Adam. Data Structures and Algorithms in C++. Vikas Publishing House / Thomson International Student Edition.

Agarwal, Ajay. The Complete Reference Guide: Data Structure through C. ISBN:

8178840448; Publisher: Cyber Tech Publications.

Course No: AS-SS 111 Semester: I Title: Principles of Soil Science Credit: 2(1+1)

SYLLABUS

Theory

Nature and origin of soil; soil forming rocks and minerals, their classification and composition, soil forming processes, in classification of soils, soil taxonomy orders, important soil physical properties and their importance, soil particle distributions, soil inorganic colloid- their composition, soil inorganic colloids-their composition, properties and origin of charge, ion exchange in soil and nutrient availability, soil organic matter- its composition and decomposition, effect on soil fertility, soil reaction- acidic, saline and sodic soils, quality of irrigation water, essential plants nutrients- their functions and deficiency symptoms in plants, importance of soil testing, types and important inorganic fertilizer and their reaction in soils. Types of organic manures and their composition.

Practical

Identification of rocks and minerals, examination of soil profile in the field, determination of bulk density, particle density of soil COLE value, determination of organic carbon of soil, determination of nitrogen, determination of phosphorus and determination of potassium, identification of nutrient deficiency symptoms of crops in the field, determination of gypsum requirement of sodic soils. Determination of water quality parameters.

Teaching Schedule – Theory with weightages %

Lecture No.	Topics	Weightage marks
1	Nature and origin of soil, soil forming rocks, minerals and their classification and composition	05
2-3	Soil forming factors and processes, Soil classification, soil taxonomy orders and soils of Maharashtra	10
4	Soil physical properties, importance, soil particle distribution soil structure, bulk density, particle density, porosity soil consistency, soil colour, COLE value, infiltration rate, hydraulic conductivity, permeability, soil strength.	15
5	Soil inorganic colloids, properties of soil colloids, soil their composition, properties and origin of charge	06
6	Ion exchange in soil and nutrient availability	08
7-8	Soil organic matter, its composition, decomposition and their effect on soil properties	10
9	Soil reaction and its significance	05
10-11	Salt affected soil, Acid Soil and their characteristics and reclamation	10
12	Quality of irrigation water, characteristics and suitability	07
13	Essential plant nutrients and their function, Jamponance of soil testing	08
14	Deficiency symptoms of nutrients in crop plants.	06
15-16	Types and importance of inorganic fertilizer and their reaction in soil, types of organic manures and their composition	10
	Total	100

Practical Exercises

Exercises No.	Торіс
1.	Preparation of standard solutions and reagents
2.	Identification of rocks and minerals
3.	Study of soil profile
4.	Determination of bulk density, particle density and porosity of soil
5.	Determination of pH and EC of the soil
6.	Determination of soil texture

7.	Determination of water holding capacity of soil (1/3 and 15 bar)
8.	Determination of calcium carbonate and organic carbon content of soil
9.	Determination of available nitrogen and potassium from soil
10.	Determination of available phosphorus from soil
11.	Analysis of irrigation water for pH, EC, cations and anions
12.	Determination of aggregate stability by Yoders apparatus
13.	Determination of organic carbon from soil
14.	Determination of gypsum/ lime requirement of soil
15.	Determination of soil strength, COLE value, soil compaction
16.	Interpretation of soil and water analytical data

Name of instrument/ equipment

- 1. pH meter
- 2. Conductivity meter
- 3. International pipette, mechanical stand
- 4. Pressure plate apparatus
- 5. Spectrophotometer
- 6. Flame photometer
- 7. Yoders apparatus

Suggested readings

Text books

- 1. Mehra, R.K. (2006). Text book of Soil Science, Directorate of Information and Publication of Agriculture, ICAR, Krishi AnusandhanBhavan, Pusa, New Delhi
- 2. Daji, A.J., Kadam J.R. and Patil, N.D. (2002). Text book of Soil Science.
- 3. SahaArun Kumar and SahaAnuradha (2014). Text book of Soil Physics, Kalyani Publisher, New Delhi.
- 4. Sushant Kumar Pal, 2016, Text Book of Soil Science, Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi

Reference books

- 1. Brady Nyle C. and Ray R. Well (2002). Nature and properties of soils. Pearson Education Inc., New Delhi.
- 2. Indian Society of Soil Science (2015). Soil Science-An Introduction, NASC complex, New Delhi.
- 3. Sehgal, J. (2015). Text book of Pedology Concept and Application. Kalyani Publisher, New Delhi.
- 4. Hillel, D. (1982). Introduction to Soil Physics. Academic Press, London.
- 5. Dilip Kumar Das (2015). Introductory Soil Science, Kalyani Publisher, New Delhi.

Course No: FMPE 111

Title: Engineering Drawing

Credit: 2 (0+2)

Semester: I

Syllabus

Practical

Introduction of drawing scales; First and third angle methods of projection. Principles of orthographic projections; References planes; Points and lines in space and traces of lines and planes; Auxiliary planes and true shapes of oblique plain surface; True length and inclination of lines; Projections of solids (Change of position method, alteration of ground lines); Section of solids and Interpenetration of solid surfaces; Development of surfaces of geometrical solids; Isometric projection of geometrical solids. Preparation of working drawing from models and isometric views. Drawing of missing views. Different methods of dimensioning. Concept of sectioning. Revolved and oblique sections. Sectional drawing of simple machine parts. Types of rivet heads and riveted joints. Processes for producing leak proof joints. Symbols for different types of welded joints. Nomenclature, thread profiles, multi start threads, left and right hand threads. Square headed and hexagonal nuts and bolts. Conventional representation of threads. Different types of lock nuts, studs, machine screws, cap screws and wood screws. Foundation bolts. Forms of screw threads, representation of threads, Bolts- headed centre, stud screws, set screws, butt, hexagonal and square; keys-types, taper, rank taper, hollow saddle etc.

Practical Exercises		
	Practical	
	No.	

Practical No.	Title of Sheet
1-2	Introduction to Drawing Instruments , Sheet Layout ,Name plate ,Types of lines
3-6	Planes Principles of orthographic projections; References planes; Points and lines in space and traces of lines and planes
7-8 9-10 11-12 13-17	Solids a1nd Solid Surfaces Projections of solids. Section of solids and Interpenetration of solid surfaces; Development of surfaces of geometrical solids; Isometric projection of geometrical solids
18-20	Exercises Preparation of working drawing from models and isometric views. Sectional drawing of simple machine parts.
21-22	Rivets and Riveted Joints Types of rivet heads and riveted joints. Processes for producing leak proof joints
23	Weld Joints Symbols for different types of welded joints.

24	Threads Nomenclature, thread profiles, multi start threads, left and right hand threads. Forms of screw threads, representation of threads,
25-27	Nuts and Bolts Square headed and hexagonal nuts and bolts Different types of lock nuts Foundation bolts
26	Screws cap screws and wood screws, stud screws, set screws,
27	Keys Types of Keys. taper, rank taper, hollow saddle etc.
28-32	Exercise on detail drawings of agricultural machinery assembly and equipment

Text /Reference Books

- 1. Bhat N D. 2010. Elementary Engineering Drawing. Charotar Publishing House Pvt. Ltd., Anand.
- 2. Bhatt N D and Panchal V M. 2013. Machine Drawing. Charotar Publishing House Pvt. Ltd., Anand.
- 3. Narayana K L and Kannaiah P. 2010. Machine Drawing. Scitech Publications (India) Pvt. Ltd., Chennai.

Course No: FMPE 112 Semester: I

Title: Workshop Practice Credit: 1(0+1)

Syllabus

Practical

Preparation of simple joint (wood working); Cross half Lap joint and T-Halving joint; Preparation of Dove tail joint. Mortise and tenor joint; Introduction to Smithy tools and operations; Jobs on Bending. Shaping etc; Jobs on drawing, punching. Reverting; Introduction to welding equipment; process tools ,jobs on Arc welding- lap joint ,butt joint ,Tee joint ;Introduction to tools and measuring instruments for fitting; Jobs on sawing, filing and right angle fitting of MS Flat; Practical in more complex fitting job Operations of drilling, reaming, and threading with tap and dies; Practical test; Introduction to tools and operations in sheet metal work; Making different types of sheet metal joints using G.I. sheets.

Practical Exercises

Exercises No.	Title
1	Study of carpentry tools, sawing and planning practice
2-3	To make (a) Butt joint (b) Tee joint by using carpentry tools
4	Introduction to hot and cold smithy tools
5-6	To make (a)Screw driver (b) Ring by using hot and cold smithy tools
7-8	Study of different welding method and their tools.
9-10	To make (a)Lap joint (b) Butt joint by using an arc welding method
11	Study of fitting tools and their uses
12-13	To make (a)Square flat (b) Triangle cut by using fitting tools
14	Study of sheet metal working tools
15-16	To make (a) Funnel (b) Cylinder

Suggested readings

Course No.:	PFE 111	Course Title:	Thermodynamics
Credits:	2(1+1)	Semester:	Ι

Syllabus

Theory

Thermodynamics properties, closed and open system, flow and non-flow processes, gas laws, laws of thermodynamics, internal energy. Application of first law in heating and expansion of gases in non-flow processes. First law applied to steady flow processes. Carnot cycle, Carnot theorem. Entropy, physical concept of entropy, change of entropy of gases in thermodynamics process. Otto, diesel and dual cycles.

Thermodynamic properties of moist air, perfect gas relationship for approximate calculation, adiabatic saturation process, wet bulb temperature and its measurement, psychometric chart and its use,

Steam, Generation of steam, Types of steam, Properties of steam, Phase change, Dryness fraction, critical point of water.

Practical

Tutorials on thermodynamic air cycles, Study and application of P V and T S chart, Study of psychrometic charts with numericals, Study of vertical boiler, Cochran boiler, Lancashire boiler, Locomotive, Babcock-wilcox boiler., study of various mountings of Boilers, Study of various accessories of boilers, Performance of steam boiler, study of steam tables and numericals.

Title	Book No.	Chapter / Art No.	Page No	Weighta ge (%)
Introduction, Definitions, units and systems	1	1.1-1.14	1-5	
Thermodynamic systems, properties, classification,	1	1.19-1.38	7-14	
Heat, energy and work, Laws of thermodynamics	1	1.39-1.52	15-23	20
Properties of gases, gas laws, enthalpies,	1	2.1-2.10	30-36	
Specific heat, relation of specific heats	1	2.11-2.18	37-45	
Flow and non-flow processes	1	3.1-3.3	50-51	
Application of first law in heating and expansion of non-flow processes	1	3.4-3.13	51-83	25
First law applied to steady flow processes	1	3.17-3.18	86-89	
Entropy, physical concept of entropy, change of entropy in thermodynamic processes	1	4.1-4.5 4.8-4.15	103-106 108-117, 120-121, 124-125, 126-128,	25
	Introduction, Definitions, units and systemsIntroduction, Definitions, units and systemsThermodynamic systems, properties, classification,Heat, energy and work, Laws of thermodynamicsProperties of gases, gas laws, enthalpies, Specific heat, relation of specific heatsFlow and non-flow processesApplication of first law in heating and expansion of non-flow processesFirst law applied to steady flow processesEntropy, physical concept of entropy, change of entropy in thermodynamic	No.No.Introduction, Definitions, units and systems1Thermodynamic systems, properties, classification,1Heat, energy and work, Laws of thermodynamics1Properties of gases, gas laws, enthalpies, Specific heat, relation of specific heats1Flow and non-flow processes1Application of first law in heating and expansion of non-flow processes1First law applied to steady flow processes1Entropy, physical concept of entropy, change of entropy in thermodynamic1	No.Art No.Introduction, Definitions, units and systems11.1-1.14Thermodynamic systems, properties, classification,11.19-1.38Heat, energy and work, Laws of thermodynamics11.39-1.52Properties of gases, gas laws, enthalpies, Specific heat, relation of specific heats12.1-2.10Specific heat, relation of specific heats13.1-3.3Application of first law in heating and expansion of non-flow processes13.17- 3.18First law applied to steady flow processes13.17- 3.18Entropy, physical concept of entropy, change of entropy in thermodynamic14.1-4.5 4.8-4.15	No.Art No.Introduction, Definitions, units and systems11.1-1.141-5Thermodynamic systems, properties, classification,11.19-1.387-14Heat, energy and work, Laws of thermodynamics11.39-1.5215-23Properties of gases, gas laws, enthalpies, thermodynamics12.1-2.1030-36Specific heat, relation of specific heats12.11-2.1837-45Flow and non-flow processes13.1-3.350-51Application of first law in heating and expansion of non-flow processes13.17- 3.1886-89First law applied to steady flow processes13.17- 3.1886-89Entropy, physical concept of entropy, change of entropy in thermodynamic processes14.1-4.5 (108-117, 120-121, 124-125,

Lesson Plan - Theory

13	Carnot cycle and Carnot theorem	1	6.1-6.12	153-159	
14	Otto cycle , Diesel cycle and Dual cycle (P-V&T-S diagram)	1	6.16, 6.17 and 6.18	171-172, 178, 187	
15	Thermodynamic properties of moist air, perfect gas relationship for approximate calculation, adiabatic saturation process, wet bulb temperature and its measurement, psychometric chart and its use,	1	37.1- 37.7	798-804, 806-807, 809-811	10
16	Steam, Generation of steam, Types of steam, Properties of steam, Phase change, Dryness fraction, critical point of water.	1	7.1-7.9	199-203, 206-208	20

Practical Exercises

No.	Title
1	Tutorials on thermodynamic air cycles
2	Study and application of P V and T S chart
3	Study of psychrometic charts with numericals
4	Study of Simple Vertical boiler
5	Study of Cochran boiler
6	Study of Lancashire boiler
7	Study of Babcock and Wilcox boiler
8	Study of Locomotive boiler
9	Study of various mountings of boilers
10	Study of various accessories of boilers
11	Study of steam generation
12	Performance of steam boiler
13	Study of steam tables with numerical
14	Study of Kelvin Plank and Clausius statement
15	Study of wet bulb temperature or adiabatic saturation temperature
16	Study of carnot cycle with numericals

Suggested readings Text Book

No.	Author	Title & Year	Publisher
1	Khurmi R.S. and	A Text Book of Thermal	S. Chand and Company Ltd., 7361
	J.K. Gupta	Engineering (SI Units) 2007	Ram Nagar, New Delhi

Reference Book

No.	Author	Title & Year	Publisher
1	Ballaney P.L.	Thermal Engineering (SI Units) 1994	Khanna Publisher, New Delhi.

Course No.	:	REE 111	Course Title	:	Engineering Chemistry
Semester	:	Ι	Credits	:	2(1+1)

Syllabus:

Theory

Phase rule and its application to one and two component systems. Fuels: classification. calorific value. Colloids: classification. properties. Corrosion: causes. types and method of prevention. Water: temporary and permanent hardness. disadvantages of hard water, scale and sludge formation in boilers, boiler corrosion. Analytical methods like thermo-gravimetric. polarographic analysis. nuclear radiation. detectors and analytical applications of radioactive materials. Enzymes and their use in the manufacturing of ethanol and acetic acid by fermentation methods.Principles of food chemistry.Introduction to lipids, proteins, carbohydrates, vitamins, colouring and flavouring reagents of food. Lubricants: properties. mechanism. classification and tests. Polymers.types of polymerization. properties. uses and methods for the determination of molecular weight of polymers. Introduction to IR spectroscopy.

Practical

Determination of temporary and permanent hardness of water by EDTA method: Estimation of chloride in water: Estimation of dissolved oxygen in water: Determination of BOD in water sample: Determination of COD in water sample: Estimation of available chlorine in bleaching powder: Determination of viscosity of oil: Estimation of activity of water sample: Estimation of alkalinity of water sample: Determination of carbonate and non- carbonate hardness by soda reagent: Determination of coagulation of water and chloride ion content: Determination of specific rotation of an optically active compound: Determination of Xnax and verification of Beer Lambert Law: Determination of calorific value of fuel: Identification of functional groups (alcohol, aldelyde, ketones, carboxylic acid and amide) by IR: Chromatographic analysis: Determination of molar refraction of organic compounds.

Lect	Topics to be covered	Book No	Chapter No	Article no	Page
No					no
1	Fuels: classification. Calorific	1	2		
	value.			2.1	73
	Fuel –definition			2.2	73
	Classification of fuels			2.3	74
	Calorific value			2.4	75
	Characteristics of a good fuel			2.5	75-76
	Comparison between solid, liquid and gaseous fuels.				
	Solid fuels: wood , coal			2.9 -2.10	81

Teaching Schedule:

2-3	Classification of coal by rank	1	2	2.11	
	Peat, Lignite, Bituminous, Anthracite			0.12	81-82
	Analysis of coal			2.13	84-86
	Solved ProblemNo.9				118-119
	Unsolved problems No. 24 &25			2.6	131
	Gross and Net calorific Value			2.6 2.6	78-80
	Determination of CV by Bomb Calorimeter			2.0	76-79
	Theoretical calculations of CV of a fuel			2.8	80
	Solved problems No. 1-5				128
	Un-solved Problems No.1,3,4,7,22,23				128-130
4	Liquid fuels	1	2		
	Petroleum Classification of			2.18	91
	Petroleum			2.18	91
	Origin of Petroleum(modern theory only)				92
	Refining of crude oil				92
	Cracking-thermal cracking.				93-95
5-6	Gaseous fuel(Definition, composition and uses only)	1	2		
	Natural gas			2.28	106
	Coal gas				
	Oil gas			2.28	106
	Producer gas			2.29	106
	Water gas			2.30	107
	Bio gas			2.31	108
	Determination of CV of gas by Junkers gas Calorimeter			2.32	109
	Flue gas analysis by Orsat's			2.33	110
	apparatus			2.36	113
					113-115

7-9	Corrosion: causes, types and method of prevention.	1	6		
	Introduction: Definition			6.1	351
	Gravity of corrosion problems			0.1	351-352
	Dry or chemical corrosion (Definition only)			6.2	352
	Wet or electrochemical corrosion			6.3	353
	Galvanic corrosion			6.5	357
	Concentration cell corrosion			6.6	358
	Passivity			6.7	360
10-	Underground or soil corrosion	1	6	6.8	360
11	Pitting corrosion			6.9	361
	Inter granular corrosion			6.10	361
	Waterline corrosion			6.11	362
	Stress corrosion			6.12	363
	Microbiological corrosion			6.13	364
	Erosion corrosion			6.14	365
	Corrosion control(protection against corrosion) methods in short			6.17	369-374
12	Water: temporary and permanent hardness. disadvantages of hard water, scale and sludge formation in boilers, boiler corrosion. Hardness of water: temporary &	1	1		
	permanent			1.5	4-5
	Disadvantages of hard water			1.6	5
	Scale and sludge formation in boilers			1.7	6
	Disadvantages of sludge formation			1.7	6
	Disadvantages of scale formation			1.7	7
	Boiler corrosion			1.9	10-11

13- 14	Lubricants: properties. mechanism. classification and tests.	1	18		
	Lubricants			18.2	721
	Functions of lubricants				721
	Mechanism of lubrication			18.3	721-723
	Classification of lubricants			18.4	723
	Lubricating oils			18.5	723
15-	Greases or semi –solid lubricants	1	18	18.6	726
16	Solid lubricants			18.7	727
	Properties of lubricating oils			18.10	729-733
	Viscosity, Viscosity Index , Flash & Fire point, Oiliness				733-737
	Cloud and pour point, Emulsion,			18.10	741
	Volatility, Carbon residue etc.				742
	Solved examples(1,2 &3)				
	Unsolved examples(1,2&3)				

Practical Exercise:

- 1) Determination of viscosity of oil:
- 2) Estimation of alkalinity of water sample:
- 3) Determination of carbonate and non- carbonate hardness by soda reagent:
- 4) Determination of coagulation of water and chloride ion content:
- 5) Determination of specific rotation of an optically active compound:
- 6) Determination of Xnax and verification of Beer Lambert Law:
- 7) Determination of calorific value of gaseous fuel:
- 8) Determination of various properties of water: Hardness/TDS,Na,Cl.MgCO₃,Ph
- 9) Ulltimate analysis of selected biomass
- 10) Proximate analysis of selected biomass
- 11) Determination of Fire point and Flash point of liquid fuel

Suggested Reading

- 1. Jain P L and Jain M. 1994. Engineering Chemistry. DanpatRai publishing company Pvt. Ltd., Delhi.
- 2. Bahl B S, ArunBahl and Tuli B D. 2007. Essentials of Physical Chemistry. S.Chand and Co. Ltd., Delhi.
- 3. M. Swaminathan, 1993. Hand Book of Food and Nutrition. Bangalore Printing and Publishing Co. Ltd., No. 88, P.B. No. 1807, Mysore Road, Bangalore-560018
- Shubhangini A. Joshi. Nutrition and Dietetics. Tata McGraw-Hill Publishing Company Limited, New Delhi. (2nd Edition)

S. N. Mahindru, 2009. Food Science & Technology. A P H Publishing Corporation 4435-36/7, Ansari Road, Darya Ganj, New Delhi-110002.

Course No.	:	FS-111	Course Title	:	Engineering Mechanics
Semester	:	Ι	Credits	:	3(2+1)

<u>Syllabus</u>

Theory:

Basic concepts of Engineering Mechanics. Force systems, Centroid, Moment of inertia, Free body diagram and equilibrium of forces. Frictional forces Analysis of simple framed structures using methods of joints, methods of sections and graphical method. Simple stresses. Shear force and bending moment diagrams. Stresses in beams. Torsion. Analysis of plane and complex stresses.

Practical:

Problems on composition and resolution of forces, moments of a force, couples, transmission of a couple, resolution of a force into a force & a couple; Problems relating to resultant of; Coplaner force system, collinear force system, concurrent force system, co-planer concurrent force system, non-coplaner non-concurrent force system, system of couples in space; Problems relating to centroids of composite areas; Problems on moment of inertia, polar moment of inertia, radius of gyration, polar radius of gyration of composite areas; Equilibrium of concurrent – co-planer and non concurrent – co-planer force systems; Problems involving frictional forces; Analysis of simple trusses by method of joints and method of sections; Analysis of simple trusses by graphical method; Problems relating to simple stresses and strains; Problems on shear force and bending moment diagrams; Problems relating to stresses in beams; Problems on torsion of shafts; Analysis of plane and complex stresses.

Lect. No.	Торіс	Book No.	Article No.	Page No.	Weightages %
1	Introduction	1	1.1 to 1.13	1-4	
2-3	Composition and Resolution of Forces	1	2.1 to 2.18	13-26	25%
4-6	Moments, Parallel forces and Couples	1	3.1-3.8, 4.1 to 4.6 and 4.8 to 4.14	28-33, 43-46 and 49-54	- 25%
7-8	Equilibrium of forces	1	5.1 to 5.10	55-74	25%

Teaching Schedule

9-11	Centre of gravity	1	6.1 to 6.11	78-93	
12-14	Moment of Inertia	1	7.1 to 7.15	100 to 118	
15-16	Friction	1	8.1 to 8.11	124 to 131	
17-18	Principles of lifting machines	1	10.1 to 10.18	171 to 183	
19-22	Simple lifting machines – simple wheel and axle, differential wheel and axle, worm and worm wheel, single purchase crab winch, double purchase crab winch and simple screw jack.	1	11.1 to 11.5, 11.7 to 11.9 and 11.15	185 to 192	25%
23-25	Support reactions	1	12.1 to 12.23	217 to 242	
26-28	Analysis of perfect frames – Analytical	1	13.1 to 13.14	244 to 250	25%
29-30	Analysis of perfect frames – Graphical method	1	14.1-14.6	289-298	

Practical Exercises:

Sr. No	Title
1	Determination of magnitude and direction of resultant force of concurrent and non-concurrent forces by Graphical method.
2	Determination of magnitude and direction of resultant force of parallel forces by graphical method.
3	Verification Lami's theorem.
4	Verification the law of Triangle of forces.
5	Verification the law of Parallelogram of forces.
6	Verification of law of Polygon of forces.
7	Determination of C.G of given shapes.
8	Determination of coefficient of friction and angle of friction.
9	Determination M. A., V. R. and efficiency of simple wheel and axle.
10	Determination M. A., V. R. and efficiency of differential wheel and axle.
11	Determination M. A., V. R. and efficiency of single purchase crab winch.
12	Determination M. A., V. R. and efficiency of simple screw jack.
13	Determination of support reaction for a beam.
14	Analysis of perfect frame using analytical method.
15	Analysis of perfect frame using graphical method.

Suggested readings

Books:

Author	Year	Title	Publisher
Text Book			
R.S. Khurmi	2008	A text book of Engineering	S. Chand and company ltd.,
		Mechanics	Ramnagar, New Delhi
Reference Books			
Sundarajan V	2002	Engineering Mechanics and	Tata McGraw Hill Publishing
		Dynamics	Co. Ltd., New Delhi.
Timoshenko S and	2003	Engineering Mechanics	McGraw Hill Book Co., New
Young D H			Delhi
Prasad I B	2004	Applied Mechanics	Khanna Publishers, New Delhi
Prasad I B	2004	Applied Mechanics and Strength	Khanna Publishers, New Delhi
		of Materials	
Bansal R K	2005	A Text Book of Engineering	Laxmi Publishers, New Delhi
		Mechanics	

Course No: AS-EXTN 111

Semester: II

Title: Communication Skill & Personality Development Credit: 2(1+1)

Syllabus

Theory

Definition and Basics of Personality; Analyzing Strength and Weakness; Theories on Personality Development; Body Language; Preparation of Self-Introduction; Communication Skills: Listening Skills; Communication Skills: Communication Barriers; Overcoming these barriers; Building Self-Esteem and Self- Confidence; Attitudes: Assertive, Aggressive and Submissive; Introduction to Leadership; Leadership Styles; Group Dynamics;Team Building; Interpersonal Communication and Relationship;Conflict Management: Introduction, Levels of Conflict and Managing Conflict. Time Management: a. Concept b. Importance and Need SEP C. Steps towards better Time Management. Public Speaking: SeP a. Introduction b. Increasing Vocabulary c. Voice Modulation d. Social Graces and Email and SeP Telephone Etiquettes SEP

Practicals

One-on-One Sessions for Individual Personality Traits; Role Play and Impromptu Conversation/Public Speaking Practice focusing on Body Language; Vocabulary Practices: Developing a repertoire of words in various fields like Agriculture, Politics, Economics, Family, Personal Grooming etc. Role Play for Self Introduction in the class; Listening to recorded Short Speeches, Lectures and Conversations Practicing Dialogues, Speeches and Conversations by Students in the Class to illustrate that Communication Barriers can be overcome; Lecture and Questionnaires for Building Self-Esteem and Self Confidence; Case Studies based on Development of Attitudes; Case Studies on Leadership Development; Case Studies on Leadership Development; Group Games, Ice breakers, Warm-ups and Energizers Team Building Activities and Exercises and Trust Building Activities; Psychological Self awareness Exercises; Practice of Non-Verbal Communication Skills: Dumb Charades and Dubsmash Practice; Mutually Acceptable Proximity; and Eye Contact; Time Management Games to Practice and Experience the Importance of Planning / Delegating Work among them to properly manage time and complete the task in the shortest time possible; Public Speaking Games: (Introducing a friend with his/her life style; Describing a funny image provided by the teacher; Continuing a Story starting with one student and others step try to continue with it and try to complete it Take any object available and try to make a commercial sep for it; Practice of Emails

Teaching Schedule – Theory with weightages %

Lecture	Торіс	Weightage (%)
1	Definition and Basics of Personality	05
2	Analyzing Strength and Weakness	05
3	Personality Development : Concept and Process	05
4	Body Language – Meaning, Definition, Use of body language - Gesture, Posture, Eye contact, facial expression	10
5	Preparation of Self -Introduction	05
6	Communication Skills: Listening, writing, speaking skills	10
7	Communication Barriers; Overcoming these barriers	05
8	Building Self-Esteem and Self- Confidence	05
9	Attitudes: Meaning, Types - Assertive, Aggressive and Submissive; Positive, Negative, Neutral	10
10	Introduction to Leadership; Leadership Styles; Group Dynamics	05
11	Team Building : Meaning, Steps	05
12	Interpersonal Communication and Relationship; Use of verbal and non verbal communication	10
13	Conflict Management: Introduction, Levels of Conflict and Managing Conflict	05
14	Time Management: Concept, Importance and Need, Steps towards better Time Management	05
15	Public Speaking: Introduction, Increasing Vocabulary, Voice Modulation, Social Graces	05
16	Email and Telephone Etiquettes	05

Practical Exercises

Exercise	Торіс
1	One-on-One Sessions for Individual Personality Traits
2	Role Play and Impromptu Conversation/Public Speaking Practice focusing on Body
2	Language
3	Vocabulary Practices: Developing a repertoire of words in various fields like
5	Agriculture, Politics, Economics, Family, Personal Grooming etc
4	Role Play for Self Introduction in the class
5	Listening to recorded Shot
6	Questionnaires for Building Self-Esteem and Self Confidence
7	Case Studies based on Development of Attitudes
8	Case Studies on Leadership Development
9	Case Studies on Leadership Development
10	Group Games, Ice breakers, Warm-ups and Energizers Team Building Activities
11	Practice of Non-Verbal Communication Skills: Dumb Charades and Dubsmash
11	Practice
12	Exercise on Mutually Acceptable Proximity; and Eye Contact
	Time Management Games to Practice and Experience the Importance of Planning /
13	Delegating Work among them to properly manage time and complete the task in the
	shortest time possible
	Public Speaking Games: (Introducing a friend with his/her life style; Describing a
14	funny image provided by the teacher; Continuing a Story starting with one student
	and others try to continue with it and try to complete it Take any object available and
	try to make a commercial for it
15	Practice of Emails
16	Presentations by the students

Suggested readings

Text Books

1) Balasubramanian T. 1989. A Textbook of Phonetics for Indian Students. Orient Longman, New Delhi.

Reference Books

- 1 Balasubrmanyam M. 1985. Business Communication. Vani Educational Books, New Delhi.
- 2 Naterop, Jean, B. and Rod Revell. 1997. Telephoning in English. Cambridge University Press, Cambridge.
- 3 Mohan Krishna and Meera Banerjee. 1990. Developing Communication Skills. Macmillan India Ltd. New Delhi.
- 4 Krishnaswamy, N and Sriraman, T. 1995. Current English for Colleges. Macmillan India Ltd. Madras.
- 5 Narayanaswamy V R. 1979. Strengthen your writing. Orient Longman, New Delhi.
- 6 Sharma R C and Krishna Mohan. 1978. Business Correspondence. Tata McGraw Hill publishing Company, New Delhi.
- 7 Carnegie, Dale. 2012. *How to Win Friends and Influence People in the Digital Age.* Simon & Schuster.
- 8 Covey Stephen R. 1989. The Seven Habits of Highly Successful People. Free Press.
- 9 Spitzberg B, Barge K & Morreale, Sherwyn P. 2006. *Human Communication: Motivation, Knowledge & Skills*. Wadsworth.
- 10 Verma, KC. 2013. The Art of Communication. Kalpaz.
- 11 Mamatha Bhatnagar and Nitin Bhatnagar. 2011. Effective Communication and Soft Skills. Person Education.
- 12 Meenakshi Raman, Sangeeta Sharma. Technical Communication Principles and Practice
- 13 Harold Wallace and Ann Masters. Personality Development. Cengage Publishers.
- 14 Andrea J. Rutherford. Basic Communication Skills for Technology. Pearson Education.
- 15 Carroll, B.J. 1986. English for College, Macmillan India Ltd. New Delhi
- 16 Hahn, "The Internet complete reference", TMH
- 17 Hornby, A.S. 1975. Guide to patterns and usage in English. Oxford University, NewDelhi.
- 18 Qurik, R and Green Baum, S 2002. A University Grammar

Course :	DEC	G 111		Credit:	1(1+0)	Semester-I
Course title:		Democracy, Elec	tions and C	Good Govern	ance	

Syllabus

Theory

Unit

No. 1

Democracy – Introduction meaning, classification, Principles of Democracy, Dimensions of democracy, Democracy and Diversity Decentralization : concept, features,Fundamental Rights in the Indian Constitution, Outcomes of Democracy and Challenges of Democracy

Unit No. 2

Independent Election Commission in India powers of election commission in India,Elections to local self Government Bodies, National level, State level,Institutions at the local level Municipal Cooperation, Municipal Council Nagar Panchayat, Zilla Parishad, Panchayat Samiti, Gram Panchayat : powers duties, Constitutional Provision of 73 & 74 constitutional Amendment Act and Important features of 73 & 74 Constitutional AmendmentAct

Unit No. 3

Good Governance : Concept, meaning,Government & Good Governance, , Good Governance and India, Nature of G.G. in India,Attributes of Poor Goverance1 and Steps taken for Good Governance in India.

Teaching Schedule (Theory)

Lecture	Торіс	Weightage (%)
1	Democracy - Introduction meaning, classification	4
2	Principles of Democracy, Dimensions of democracy	6
3	Democracy and Diversity Decentralization : concept, features,	6
4	Fundamental Rights in the Indian Constitution	10
5	Outcomes of Democracy, Challenges of Democracy	5
6	Independent Election Commission in India powers of election commission in India	8
7	Elections to local self-Government Bodies, National level, State level	8
8	Institutions at the local level Municipal Cooperation, Municipal Council Nagar Panchayat	8
9 & 10	Zilla Parishad, Panchayat Samiti, Gram Panchayat : powers duties	10
11	Constitutional Provision of 73 & 74 constitutional Amendment Act	5

Lecture	Торіс	Weightage (%)
12	Important features of 73 & 74	5
	Constitutional Amendment Act	
13	Good Governance : Concept, meaning	5
14	Government & Good Governance, , Good Governance and India, Nature of G.G. in India	5
15	Attributes of Poor Goverance1	5
16	Steps taken for Good Governance in India	10
	Total	100

Suggested Readings:

- 1) Development and Democrasy in India by Shailendra D Dharma, Publication : Publisher: Lynne Rienner, Boulder. Year: 2002
- 2) The Constitution of India, by P. M. Bakshi. Publication:Universal Law Publishing. Edn.: 14th, Year :2017

SEMESTER : II

Course No. BS-MATH 122

Title: Engineering Mathematics-II

Semester: II (New)

Credits 3(2+1)

Syllabus

Theory

Differential equations and its applications: Exact differential equations, equations reducible to exact form by integrating factors, Bernoulli's equation, Equations of first order and higher degree: Clairaut's equation, Linear differential equations with constant coefficients, methods of finding complementary functions and particular integrals, Cauchy's and Legendre's linear equations, simultaneous linear differential equations with constant coefficients

Functions of a Complex variable and its applications: Limit, continuity and derivative of f(z), Cauchy-Riemann equations, analytic functions, Harmonic functions.

Infinite series and its convergence: Series, conditions of convergence, Ratio Test, Raabe's Test, Logarithmic test, Alternating series, Power series, Convergence of exponential, logarithmic, binomial series. **Fourier series and its Applications**: Euler's formulae, Dirichlet's conditions, functions having arbitrary period, even and odd functions, half range series.

Partial differential equations and its Applications: Formation of partial differential equations by elimination of arbitrary functions, solutions of partial differential equations. Linear equation of the first order, non-linear partial differential equations, application of partial differential equations (one dimensional wave and heat flow equations, Laplace Equation.)

Practical

Differential equations –Exact and Non-Exact, Bernoulli's Differential equations, Equations of first order and higher degree, Clairaut's equation, Applications of differential equations of first order, Applications of higher order linear differential equations, Applications of Cauchy's and Legendre's linear equations, Applications of Simultaneous linear differential equations with constant coefficients, Applications of Functions of a Complex variable, Infinite series and its convergence, Fourier series in the interval $[0,2\pi], [-\pi,\pi]$, Fourier series in the interval [0,2l], [-l,l], Half range series, Harmonic analysis, Solutions of partial differential equations, Non-linear partial differential equations, Laplace Equation

Lecture No.	Topics to be covered	weightage
	al Equations and its Applications	
1-10	Exact differential equation	
	Equations reducible to exact form by Integrating factor	
	Bernoulli's differential equation	
	Equations of the first order and higher degree: Clairaut's form	
	Applications of Differential Equations of first order	35%
	Linear differential equations with constant coefficients –Rules for	
	finding complementary functions	
	Rules for finding the Particular integral	
	Method of variation of parameters	
	Simultaneous linear differential equations with constant coefficients	
Function (of complex variable and its Applications	
11-15	Complex Function, Limit, continuity	
	Derivative of complex function	100/
	Cauchy- Riemann equation with proof	10%
	Analytic function	
	Harmonic functions	
Infinite Se	eries and its convergence	
16-20	Tests of convergence: Ratio Test	
	Raabe's Test, Logarithmic test	
	Alternating series and Leibnitz rule	15%
	Power series	
	Convergence of exponential series, logarithmic series and binomial	
	series.	
Fourier se	ries	
21-27	Euler's formulae	
	Dirichlet's conditions	
	Fourier series in the interval $[0,2\pi]$	
	Fourier series in the interval $[-\pi,\pi]$	25%
	Fourier series in the interval [0,2 <i>l</i>]	
	Fourier series in the interval $\begin{bmatrix} -l, l \end{bmatrix}$	
	Half range series	
Partial dif	ferential equations and its Applications	
28-32	Formation of partial differential equations	
	Solutions of partial differential equation	15%
	Lagrange's linear equation	
	Non- linear equation of the first order	

Teaching Schedule – Theory with weightages (%)

Practical Exercise

- 1. Differential equations -Exact and Non-Exact
- 2. Bernoulli's Differential equations
- 3. Equations of first order and higher degree, Clairaut's equation
- 4. Applications of differential equations of first order
- 5. Applications of higher order linear differential equations
- 6. Applications of Cauchy's and Legendre's linear equations
- 7. Applications of Simultaneous linear differential equations with constant coefficients.
- 8. Applications of Functions of a Complex variable
- 9. Infinite series and its convergence
- 10. Fourier series in the interval $[0,2\pi], [-\pi,\pi],$
- 11. Fourier series in the interval [0,2l], [-l, l],
- 12. Half range series
- 13. Harmonic analysis.
- 14. Solutions of partial differential equations
- 15. Non-linear partial differential equations
- 16. Application of partial differential equations: one dimensional wave and heat flow equations, Laplace Equation

Suggested Reading

Text Book

1. Dr. Shinde K. J. et.al. A text book of Agricultural Engineering Mathematics-II

Reference Books

- 1. Narayan Shanti. 2004. A Text Book of Matrices. S. Chand and Co. Ltd. New Delhi.
- 2. Grewal B S. 2015. Higher Engineering Mathematics. Khanna Publishers Delhi.(43rd Edition)
- 3. Ramana B V. 2008. Engineering Mathematics. Tata McGraw-Hill. New Delhi.

Course No: BS-COMP-122 Course Title:-Web Designing and Internet Applications

Semester:- II Credits: 2(0+2)

Practical's:

Basic principles in developing a web designing, Planning process, Five Golden rules of web designing, Designing navigation bar, Page design, Home Page Layout, Design Concept. Basics in Web Design, Brief History of Internet, World Wide Web, creation of a web site, Web Standards, Audience requirement.

FLASH: Animation concept FPS, Understanding animation for web, Flash interface, Working with tools,

DREAM WEAVER :Exploring Dreamweaver Interface, Planning & Setting Web Site Structure, Working with panels, Understanding and switching views, Using property inspector, Formatting text,

JAVA SCRIPT: Working with alert, confirm and prompt, Understanding loop, arrays, Creating rollover image, Working with operator,

FTP UPLOADING SITE: Learning to use FTP, Setting FTP, Uploading of site, Using Control panel,

GIF ANIMATION: Understanding gif animation interface, Knowing GIf file format, Creating basic web banners, Creating web banners with effects, Creating animated web buttons.

Practical	Practical topic	
no.		
1-12	HTML: How to create web page (Textboxes, Button, Radio-Button, Checkboxes, List). Creation of Simple Website using HTML	
13-17	DREAM WEAVER : Exploring Dreamweaver Interface, Planning & Setting Web Site Structure, Working with panels, Understanding and switching views, Using property inspector, Formatting text	
18-20	FLASH : Animation concept FPS, Understanding animation for web, Flash interface, Working with tools.	
21-27	JAVA SCRIPT: Working with alert, confirm and prompt, Understanding loop, arrays, Creating rollover image, Working with operator	
28-30	FTP UPLOADING SITE: Learning to use FTP, Setting FTP, Uploading of site, Using Control panel.	
31-32	GIF ANIMATION: Understanding gif animation interface, Knowing GIF file format, Creating basic web banners, Creating web banners with effects, Creating animated web buttons	

Practical Exercises

Suggested readings

Text and Reference books

- 1) Jennifer Niederst Robbins. Developing web design latest edition.
- 2) Frain and Ben. Responsive Web Design with HTML5..
- 3) Nicholas c.Zakas. Java Script for Web Developers.
- 4) George Q. Huang, K. L Mak. Internet Applications in Product Design and Manufacturing. ISBN:3540434658.
- 5) Text book on Web Designing and Internet Applications (Under publication)

On-line tutorial web site

http://www.tutorialpoint.com.

http://www.W3School.com.

www.htmlprograms.com.

Course No: AS-STAT 121

Title: Statistical Methods in Engineering

Credit: 2(1+1)

Semester: II

Syllabus

Theory:- Definitions of Statistics and its applications in Agriculture Engineering, Limitations, Types ofdata, Classifications, Tabulation and Frequency distribution, Graphical presentation of data Histogram, Frequency curve, Frequency polygon, Cumulative frequency curve (Ogive curve)

Arithmetic Mean, Median, Mode, GM, HM, Weighted Average, Quartiles, Deciles, Characteristics of ideal measure, Merits and Demerits of various measures (Grouped and Ungrouped data),

Measures of Dispersion, Range, Mean deviation, Quartile deviation, Standard deviation and Variance and respective relative measures (Grouped and Ungrouped Data).

Concept of measures of Skewness and Kurtosis.

Definition of Correlation, types, Scatter Diagram. Karl Pearson's Coefficient of Correlation and its test of significance. Spearman's Rank Correlation Coefficient.

Concept of linear Regression equations, definition & properties of Regression coefficient, constant, fitting of Regression lines, its test of significance, comparison of Regression and Correlation Coefficients, Introduction to Non linear regression viz; Quadratic, Exponential and Gompertz curve.

Probability, Terminologies and Definitions of Trial, Random experiment, Events (simple, compound, equally likely, complementary, independent, dependant, mutually exclusive) Definitions of Probability (mathematical, statistical, axiomatic), Addition and Multiplication theorem (without proof). Laws of Addition of Probability (when events are mutually exclusive and events are not mutually exclusive).

Random variable, Discrete and Continuous Random variable, Probability Mass and Density function, Definition and properties of Binomial, Poisson and Normal distributions.

Definitions of Population, Sample, Parameter, Statistic, Need of sampling, Sampling versus complete enumeration and introduction to Simple Random Sampling method. Simple Random Sampling with and without replacement, Selection of random sample.

Introduction to test of significance, Null and Alternate Hypothesis, Types of errors, One tailed and Two tailed test, degrees of freedom, Level of Significance, Critical region, Steps in testing of hypothesis, One sample, Two sample, Paired 't' test and 't' test for testing significance of correlation coefficient, F test for testing equality of variances, Chi-square test of goodness of fit and Chi-square test of independence of attributes in 2×2 contingency table. Introduction to analysis of variance, Assumptions of ANOVA, analysis of one way classification.

Practical:- Graphical presentation : Histogram, Frequency Curve, Frequency Polygon, Cumulative Frequency Curve (Ogive Curve) Computations of Arithmetic Mean, Mode, Median, GM and HM, Quartiles, Deciles & Percentiles (Ungrouped data and Grouped data).Computations of Range, Mean Deviation, Quartile Deviation, Standard Deviation and Variance and respective relative measures (Ungrouped and Grouped data). Computations of Karl Pearson's Coefficient of Correlation with its test of significance, Computation of Spearman's Rank Correlation Fitting of simple Linear Regression equation with test of significance of Regression Coefficient. Problems on One sample, Two Sample, Paired t-test and 't' test for Correlation Coefficient, Chi-Square test of Goodness of Fit. and Chi-square test of independence of Attributes for 2 ×2 contingency table. Analysis of Variance one way and two way classification.

Teaching Schedule – Theory with weightages %

Lecture No.	Торіс	Weightages %
1	Introduction : Definitions of Statistics and its applications in Agriculture Engineering, Limitations, Types of data, Classifications, Tabulation and Frequency distribution	08
	Graphical presentation: Histogram, Frequency curve, Frequency polygon, Cumulative frequency curve (Ogive curve)	
2-3	Measures of central tendency : Arithmetic Mean, Median, Mode, GM, HM, Weighted average, Quartile, Deciles, Percentiles, Characteristics of ideal measure, Merits and Demerits of various measures (Grouped and Ungrouped data)	08
4-5	Measures of Dispersion: Range, Mean Deviation, Quartile Deviation, Standard Deviation and Variance and respective relative measures (Grouped and Ungrouped Data), Concept of measures of Skewness and Kurtosis.	08
6-7	Correlation: Definition of Correlation, Types, Scatter diagram. Karl Pearson's Coefficient of Correlation and its test of significance. Spearman's Rank Correlation coefficient.	10
8-9	Regression : Linear Regression equations, definition & properties of Regression coefficient, constant, fitting of Regression lines, its test of significance, comparison of Regression and Correlation coefficients. Non linear Regression viz; Quadratic, Exponential and Gompertz curve.	10
10	Probability: Terminologies and Definitions of Trial, Random experiment, Events (simple, compound, equally likely, complementary, independent, dependant, mutually exclusive) Definitions of probability (mathematical, statistical, axiomatic), Addition and Multiplication theorem (without proof). Laws of Addition of Probability (when events are mutually exclusive and events are not mutually exclusive).	06
11-12	Probability distributions: Random variable, Discrete and Continuous Random variable, Probability Mass and Density function, Definition and properties of Binomial, Poisson and Normal distributions.	10
13	Sampling: Definitions of population, Sample, Parameter, Statistic, need of Sampling, Sampling versus complete enumeration and Introduction to Simple Random Sampling methods. Simple Random Sampling with and without replacement, Selection of random sample.	05
14	Test of significance : Null and Alternate Hypothesis, Types of errors, One tailed and Two tailed test, Degrees of freedom, Level of significance, Critical region, Steps in testing of hypothesis,	10
15	One sample, Two sample, Paired 't' test, and 't' Test for Correlation Coefficient, F test for equality of variance	10

	Assumptions of ANOVA, Analysis of one way classification. Total	100
	attributes in 2 ×2 contingency table and Analysis of Variance: Introduction to Analysis of Variance,	
16	Chi-square test of goodness of fit and Chi-square test of independence of	15

Practical Exercises

EX.No.	Торіс
1	Graphical presentation: Histogram, Frequency curve, Frequency polygon, Cumulative frequency curve (Ogive curve)
2	Measures of central tendency : Computations of Arithmetic Mean, Mode, Median, GM and HM, Quartiles, Deciles & Percentiles (Ungrouped data).
3	Computations of Arithmetic Mean, Mode, Median, Quartiles, and Deciles & Percentiles (Grouped data).
4	Measures of Dispersion: Computations of Range, Mean Deviation, Quartile Deviation, Standard Deviation and Variance and respective relative measures (ungrouped Data).
5	Computations of Range, Mean Deviation, Quartile Deviation, Standard Deviation and Variance and respective relative measures (grouped data).
6-7	Correlation: Computations of Karl Pearson's coefficient of correlation with its test of significance
8	Spearman's Rank Correlation
9-10	Regression : Fitting of simple linear Regression equation with test of significance of Regression coefficient.
11-12	Test of Significance: Problems on One sample, Two Sample and Paired t-test. and test for correlation coefficient.
13	F test for testing equality of variance
14-15	Chi-Square test of Goodness of Fit. and Chi-square test of independence of Attributes for 2×2 contingency table.
16	Analysis of Variance: Analysis of Variance - One way classification.

Suggested readings

Text Books

- 1. A Text book of Agriculture Statistics by R. Rangaswami (2009)New Age International (P) Limited, Hyderabad.
- 2. Statistics for Agriculture Sciences by Nageshwar Rao G.(2007)New Delhi : BS Publications

Reference Books

- 1. Statistical methods for Agricultural workers by Panse V.G. Sukhatme P.V. (1985) Indian Council of Agricultural Research New Delhi
- 2. Statistical Methods by Snedecor GW. & Cochran WG. (1989)., Iowa State University Press.
- 3. Statistical Procedures for Agricultural Research by Gomez, K.A. and Gomez, A.A.(1984). John Wileyand Sons. New York.
- 4. Fundamentals of Applied statistics by V.K. Kapoor (2007) Sultan Chand and Sons, New Delhi-110 002

Course No: AS-AGRO 121

Title: Principles of Agronomy Credit: 2 (1+1)

Syllabus

Semester: II

Theory

Introduction and scope of agronomy in relation to agricultural engineering. Classification of crops, Effect of different weather parameters on crop growth and development. Principles of tillage, tilth and its characteristics. Crop seasons. Methods, time and depth of sowing of major field crops (Cereals: paddy, sorghum, maize, pearlmillet, wheat, Pulses: green gram, black gram, pigeonpea, chickpea Oilseeds: groundnut, soybean, sunflower, safflower Cash crop: cotton, sugarcane). Methods and time of application of manures and fertilizers. Organic farming; principle, concept, components, certification, residue management, energy generation. Sustainable agriculture; definition, principle, concept, components and indices. Soil water plant relationship, crop coefficients, water requirement of crops and critical stages for irrigation, weeds and their control, crop rotation, cropping systems, intercropping, Relay cropping.

Practical

Identification of crops and their varieties, seeds, manures, fertilizers and weeds; Fertilizer application methods; Different weed control methods; Practice of ploughing, Practice of Puddling, Practice of sowing, inter-cultivation, signs of maturity, harvesting and threshing.

Lecture No.	Topic to be covered	Weightages (%)
1-2	Scope of agronomy in relation to agricultural engineering. Classification of crops	09
3-4	Effect of different weather parameters on crop growth and development.	06
5-6	Principles of tillage, tilth and its characteristics.	06
7-10	Crop seasons. Methods, time and depth of sowing of major field crops (Cereals: paddy, sorghum, maize, pearlmillet, wheat, Pulses: green gram, black gram, pigeonpea, chickpea Oilseeds: groundnut, soybean, sunflower, safflower Cash crop: cotton, sugarcane).	48
11-12	Methods and time of application of manures and fertilizers.	09
13-14	Organic farming; principle, concept.	13
15-16	Sustainable agriculture; definition, principle, concept, components.	09
	Total	100

Teaching Schedule – Theory with weightages %

Practical Exercises

Ex. No.	Торіс
1	Identification of crops plant and seed at different growth stages
2	Identification of important varieties of cereal and pulses crops
3	Identification of important varieties of oil seeds and cash crops
4	Study of manures, fertilizers and Fertilizer application methods
5	Practices of fertilizer application to different field crops
6	Calculations of plant population, seed rate and fertilizers doses.
7	Identification of weeds; Different weed control methods; calculation doses of different herbicides.
8	Study of primary tillage implements,.
9	Study of Practice of ploughing
10	Study of puddling implements and practices of puddling in rice
11	Study of different methods of sowing of field crops.
12	Study of different inter cultural implements and working with them.
13	Practice of interculture operation in different field crops
14	Signs of maturity of important field crops
15	Harvesting and threshing of cereals, pulses, oil seeds and cash crops.
16	Participation in on-going field operations and actual working in the field.

Suggested readings

Text Books:-

Reddy Yellamanda T and Shankar Reddy G H. 2011. Principles of Agronomy. Kalyani Publishers Ludhiana.

Reference Books:

William L Donn. 1965. Meteorology. McGraw-Hill Book Co. New York.

Arnon L. 1972. Crop Production in Dry Regions. Leonard Hill Publishing Co. London.

Yawalkar K S and Agarwal J P. 1977. Manures and Fertilizers. Agricultural Horticultural Publishing House, Nagpur.

Gupta O P. 1984. Scientific Weed Management in the Tropics and Sub-Tropics. Today and Tomorrow's Printers and Publishers. New Delhi.

Rao V S. 1992. Principles of Weed Science. Oxford and IBH Publishing Co. Ltd. New Delhi.

Reddy S.R. 2012. Principles of Agronomy

Chidda Singh, Prem Singh and Rajbir Singh. 2005. Modern techniques of raising field crops.

Organic farming Theory and Practice: Palaniappan SP and K.Anndurai 2012

Course No: AS-HORT 121

Title: Principles of Horticultural Crops and Plant Protection Credit: 2(1+1)

Semester: II

Syllabus

Theory

Scope of horticultural. Soil and climatic requirements for fruits, vegetables and floriculture crops, improved varieties, Criteria for site selection, layout and planting methods, nursery raising, commercial varieties/hybrids, sowing and planting times and methods, seed rate and seed treatment for vegetable crops; macro and micro propagation methods, plant growing structures, pruning and training, crop coefficients, water requirements and critical stages, fertilizer application, fertigation, irrigation methods, harvesting, grading and packaging, post harvest practices, Garden tools, management of orchard, Extraction and storage of vegetables seeds. Major pests and diseases and their management in horticulture crops.

Practical

Judging maturity time for harvesting of crop; Study of seed viability and germination test; Identification and description of important fruits, flowers and vegetable crops; Study of different garden tools; Preparation of nursery bed; Practices of pruning and training in some important fruit crops, visit to commercial greenhouse/ polyhouse; cultural operations for vegetable crops (sowing, fertilizer application, mulching, irrigation and weed control); seed extraction techniques; identification of important pests and diseases and their control.

Teaching Schedule – Theory with weightages %

Lecture No.	Particulars		
1	Scope of Horticultural crops.	05	
2	Soil and climatic requirements for fruits ,vegetables and floriculture crops.	05	
3	Criteria for sites selection, layout and planting methods, nursery raising.	10	
4	Commercial Varieties, improved varieties / hybrids,	05	
5-6	sowing and planting times and methods,	10	
	seed rate and seed treatment for vegetable crops		
7-8	Micro and Macro propagation methods in Horticultural crops.	15	
	Methods of irrigation and irrigation management, fertigation		
9	Training and Pruning in Horticulture crops, plant growing structures	10	
10-11	Crop coefficients, water requirements and critical stages, fertilizer application,	10	
12-13	harvesting, grading and packaging, post-harvest practices	10	
14-15	Garden tools, management of orchard, extraction and storage of vegetable seeds	10	
16	Major pests and diseases and their management in horticultural crops	10	
		100	

Practical Exercises

Exercise No	Title	
1	Identification and description of Important fruit crops.	
2	Identification and description of Important vegetable crops.	
3	Identification and description of Important flower crops.	
4	Study of different Garden tools.	
5-6	Practices of training and pruning in Important fruit crops	
7	Preparation of nursery bed.	
8-9	8-9 Cultural operations for vegetable crops.	
	(sowing, layout, fertilizer application, mulching, irrigation and weed control)	
10	Study of seed viability and germination test.	
11	Seed extraction techniques.	
12	Judging maturity time for harvesting of horticultural crops.	
13-15	Identification of different pests and diseases and their control.	
16	Visit to commercial greenhouse/ polyhouse	

Suggested Readings Text books :

- Fundamental of horticulture by Edmond Et. al., Mc Grow Hill Book Company
- Horticulture in India. Bansal. P.C. 2008. CBS Publishers and Distributors, New Delhi.
- Fruits of India Tropical and Subtropical by T.K. Bose
- Plant propagation principle & practices by Hartman H.T. and D.E. Kester, Prentice Hall of India, N. Delhi
- Vegetable crop in India by T.K. Bose and Som, Naya Prakash, Culcutta
- Textbook on floriculture & landscaping by N. Roychowdhary& H.P. Mishra

Reference books

- Introductory horticulture by Kumar N., Rajalaxmi Pub., Veepamodu (TN)
- Complete gardening in India by Kunte Y.H. & K.S. Yawalkar, G. Kasturirangan, Banglore
- Production technology of fruit crops by Shanmugavelu K.G., Oxford & IBH, Delhi
- Vegetable production in India by Chauhan D. V. S., Ramprasad& Sons, Agra
- Floriculture in India by Mukhopadhya A., Lyal book depot, Ludhiana
- Greenhouse construction & environment control by Pritam Chandra
- Green house Operation and management by Nelson Paul V.
- Diseases of Horticultural Crops. Arjunan, G., Karthikeyan, G, Dina Karan, D. and Raguchander, T. 1999. AE Publications, Coimbatore.
- Insect pest of South East Asia. by Dhaliwal and Arora.
- Hand Book of Horticulture, by Chadha K.L. 2003, ICAR.
- Postharvest management of Horticultural Crops. Saraswathy, S., T. L. Preethi, S. Balasubramanyan, J. Suresh, N. Revathy and S. Natarajan. 2007. Agrobios Publishers, Jodhpur.
- Postharvest diseases of horticultural crops ,Sharma Neeta and MashkoorAlam 1997,International Book publishing Co.UP

Course No: FMPE 123

Credit: 1+1=2

Course Title: Workshop Technology

Semester- II

Syllabus

Theory

Iron carbon phase diagram, lattice type, ferrous and non-ferrous metals and their alloys, Heat treatment: Introduction, purpose, method, Annealing, Normalizing, Hardening, case hardening, carburizing, nitriding, cyniding, flame hardening, quenching. Introduction to welding, types of welding, Oxyacetylene gas welding, types of flames, welding techniques and equipment. Principle of arc welding, equipment and tools. Casting processes; Classification, constructional details of center lathe, Main accessories and attachments. Main operations and tools used on center lathes. Types of shapers, Constructional details of standard shaper. Work holding devices, shaper tools and main operations. Types of drilling machines. Constructional details of pillar types and radial drilling machines. Work holding and tool holding devices. Main operations. Twist drills, drill angles and sizes. Types and classification. Constructional details and principles of operation of column and knee type universal milling machines. Plain milling cutter. Main operations on milling machine.

Practical

Preparation of simple joints: Cross half Lap joint and T-Halving joint; Preparation of Dovetail joint, Mortise and tenor joint; Jobs on Bending, shaping etc.; Jobs on Drawing, Punching, Rivetting. Introduction to tools and measuring instruments for fitting; Jobs on sawing, filing and right angle fitting of MS Flat; Practical in more complex fitting job; Operations of drilling,, reaming, and threading with tap and dies; Introduction to tools and operations in sheet metal work; Making different types of sheet metal joints using G.I. sheets. Introduction to welding equipment, processes tools, their use and precautions; Jobs on ARC welding – Lap joint, butt joint; T-Joint and corner joint in Arc welding; Gas welding Practice – Lab, butt and T-Joints; Introduction to metal casting equipment, tools and their use; Mould making using one-piece pattern and two pieces pattern; Demonstration of mould making using sweep pattern, and match plate patterns; Introduction to machine shop machines and tools; Demonstration on Processes in machining and use of measuring instruments; Practical jobs on simple turning, step turning; Practical job on taper turning, drilling and threading; Operations on shaper and planer, changing a round MS rod into square section on a shaper; Demonstration of important operations on a milling machine, making a plot, gear tooth forming and indexing; Any additional job.

Lesson Plan

Lec. No.	Торіс	Book	Chapter	Article no.	Page no
1	Types of lattice, Iron carbon equilibrium diagram	A	2	2.3 2.12-2.13	23-24 36-39
2-3	Ferrous metal and alloys	A	4	4-2, 4.4-4.6 5-2-5.10	61-63, 64-74 103-112
4	Nonferrous, metal and alloys	Α	5		
5-6	Heat treatment: Introduction, purpose, method, Annealing, Normalizing, Hardening, case hardening, carburizing, nitriding, cyniding, flame hardening, quenching.	A	6	6.5 - 6.18	125 - 149
7-8	Foundry: Pattern making tools, types of pattern, pattern making. Allowances, types of molding sand, making of greensand mould, defects in casting	A	11	11.3-11.5 11.13, 11.21, 11.36	311-322 341 357-359 419-422
9	Welding: Arc welding methods. Defects	A	9	9.10	223-241
	in welding and precautions	C	9	9.54	
10-11	Lathe machine: Types and classification	В	3	3.1-3.4	83-88
12-13	Shaper: types and classification shaper operation	В	7	7.1-7.2, 7.7	297-299, 315-319
14-15	Milling machine- types and classification, operation	В	11	11.1-11.2	399-400
16	Drilling machine and classification operation	В	5	5.1-5.10	227-233

Teaching schedule- Theory with weightages (%)

Unit No.	Lectures No.	Торіс	Weightages (%)	
Ι	1 Types of lattice, Iron carbon equilibrium diagram			
	2-3	Ferrous metal and alloys		
	4	Nonferrous, metal and alloys		
II	7-8	Heat treatment: Introduction, purpose, method, Annealing, Normalizing, Hardening, case hardening, carburizing, nitriding, cyniding, flame hardening, quenching. Foundry: Pattern making tools, types of pattern, pattern	30	
	, 0	making. Allowances, types of molding sand, making of greensand mould, defects in casting		
III	9-10	Welding: Arc welding methods. Defects in welding and precautions	10	
IV	11-12	Lathe machine: Types and classification	40	
	13-14	Shaper: types and classification shaper operation		
	15	Milling machine- types and classification, operation		
	16	Drilling machine and classification operation		

Practical

Practical	Title of practical	
No.		
Jobs on L	athe Machine	
1-2	Study of facing operations on the given job.	
3	Study of step turning operation on the given job.	
4	Study of taper turning operation on the given job.	
5	Study of knurling operation on the given job.	
6-7	Study of internal and external threading operation on the given job.	
8	Introduction and demonstration to CNC machine.	
Jobs on Sl	haping Machine	
9	Study of surface planning operation on shaping machine.	
10-11	Study of slotting operation for making key slot on the given job.	
Jobs on M	lilling Machine	
12-13	To make hexagonal head on given job with the milling machine.	
Jobs on Drilling Machine		
14-15	Jobs on drilling, reaming, internal threading and countersunk operations.	
16	Visit to manufacturing industry.	

Suggested readings

- A. Elements of workshop technology, VOl I: manufacturing process by S.K. Hajra Choudhary, A.K.Hajra Choudhary, Nirjhar Ray, In collaboration with Prof. D.C, Bhattacharya (Fifteenth Edition) Media Promotors and Publishers Pvt. Ltd.
- B. Elements of workshop technology, VOl II: Machine Tools by S.K. Hajra Choudhary, A.K.Hajra Choudhary, Nirjhar Ray, In collaboration with Prof. D.C, Bhattacharya (Fifteenth Edition) Media Promotors and Publishers Pvt. Ltd.
- C. Production technology by R.K. Jain, Khanna Publishers Delhi. (Fifteenth Edition).

Course No.	:	SWCE 121	Course Title: Surveying and Leveli	
Semester	:II		Credits:	3 (1+2)

Syllabus

Theory:

Surveying: Introduction, classification and basic principles, linear measurements. Chain surveying,. Cross staff survey, Compass survey, Plannimeter, errors in measurements, their elimination and correction, Plane table surveying, Leveling difficulties and error in leveling, Contouring, Computation of area and volume. Theodolite traversing, Introduction to setting of curves, Total Station, Electronic Theodolite, Introduction to GPS survey.

Practical:

Chain survey of an area and preparation of map; Compass survey of an area and plotting of compass survey; Plane table surveying; Leveling L Section and X section and its plotting; Contour survey of an area and preparation of contour map; Introduction of software to drawing contour; Theodolite surveying; Ranging by Theodolite, Height of object by using Theodolite; Setting of curves by Theodolite; Minor instruments; Use of Total Station.

Lect. No.	Торіс	Book No.	Page No.	Weightage (%)
1	Definitions, Object of Survey, Primary Divisions of Survey, Classification and use of survey	1	1 to 4	
2	Principle of surveying, Measurement, Units of measurements, Methods of locating points, Works of surveyor, Precision in surveying	1	4 to 9 13 to 15,	
3	Principles of Chain Surveying, Triangulation survey, Survey station, Selection of stations, Survey lines, ranging and types of ranging	1	74 to 91 45 to 51	
4	Chaining, Type of chains, Recording the measurement, Offsets and their types, Number of offsets, Computation of areas.	1	34 to 46 77 to 83 309 to 317	30
5	Errors in lengths due to incorrect chain, Correction for slopes, Error in chaining with tape and corrections, Numerical on chain and tape corrections	1	32 to 71	
6	Instruments for setting right angles, Cross staff, Prism square and optical square, Obstacles in chaining and ranging, Numerical	1	95 to 119	

Teaching Schedule – Theory with weightages (%)

7	Types and Methods of Traverse survey, Prismatic	1	130 to 151	25
/	Compass, Surveyor Compass, Bearing of line, and	1	150 to 151	23
	computation of angles.			
8	Local attraction and numerical, Magnetic declinations,	1	151 to 173	
0	Dip of needles, Plotting of traverse survey, Errors and	1	151 to 175	
	limitation of compass survey.			
9	Plane Tabling, Instruments & Accessories. Advantages	1	289 to 293	
	and Disadvantages, setting & orientating tables,	1	207 10 275	
10	Methods of Plane tabling, Radiation, Intersection,	1	293 to 303	
10	Traversing and Resection, Errors in Plane Tabling	-	278 10 200	
11	Leveling, Terms used in leveling, Types of levels,	1	345 to 367	25
	Leveling staffs, Focusing, Bench Marks, Adjustment of	_		
	Level.			
12	Principles of leveling, Reduction of levels, Booking of	1	368 to 383	
	staff reading, Numerical			
13	Classification of leveling, Differential, Profile, Cross	1	384 to 409	
	sectioning, effect of curvature and refraction, check			
	leveling, Reciprocal and precise leveling.			
14	Contouring, Characteristics of contours, Use of contours,	1	430 to 438	20
	Locating the contours, Interpolation of contours.			
15	Theodolites, Total Survey Stations, Traversing,	1	179 to 187	
	Measurement of horizontal and vertical angle,		203 to	
	Introduction to setting of curves, Introduction to GPS.	5	212,	
			276-278	
16	Computation of Earth Work Volumes, Formulae for	1	454 to 468	
	straight level section, Two level section, Side Hill, Two			
	level Section and Three level Section, Prizmoidal			
	formula and Numerical			

Practical Exercises

Ex. No.	Exercise
1.	Study of distance measuring instruments
2.	Determination of error in length of chain using tape
3.	Ranging of survey line (Direct ranging)
4.	Ranging of survey line (indirect ranging)
5.	Dropping of perpendicular on chain line from point outside
6.	Erecting perpendicular on chain line
7.	Chain survey of an area by Triangulation and Cross staff
8.	Plotting of chain survey and computation of area
9.	Study of Prismatic Compass and surveyor compass, Taking bearing, and computation of
	angle
10.	Open traverses survey of Road or Stream and Plotting
11.	Closed Traverse survey of field / building and Plotting
12.	Plane Table survey by Radiation Methods

13.	Plane Table survey by Intersection Methods
14.	Plane Table survey by Traversing Methods
15.	Study of different levels, leveling staff, and their adjustment
16.	To study booking of staff reading to determine the reduced level
17.	To study the simple and differential leveling to determine reduced levels
18.	To study the profile leveling and determine reduced leveling
19.	To study the plotting of profile leveling and compute cutting & filling
20.	To study the Grid survey of field
21.	Plotting of contours and interpolation of contours
22.	Study the software for drawing of contours
23.	Cross sectioning of gully or nala and plotting
24.	L-section of a gully or nala and plotting
25.	To study the Theodolite, Measurement of vertical and horizontal angle by Theodolite
26.	Determine the height of object with Theodolite
27.	Setting of curves with Theodolite
28.	Study of Total Survey Station and Computation horizontal, Vertical and height of object
	with Total Survey Station
29.	Study of Minor Instruments (Abney level, hand level, Box sextant and Clinometers)
30.	Study of minor instruments (Box sextant Line ranger, optical square)
31.	Study of Plannimeter and Pentagraph
32.	Study of GPS and Measuring area with GPS

Suggested readings

Text Book:

- 1) Surveying and leveling, Part-I, T. P.Kanetkar, S. V. Kulkarni, 23rd edition, 1999
- 2) Remote Sensing and GIS, By AnjiReddey

Reference Books:

- 1) Surveying and levelling -Part-II, T. P.Kanetkr, S. V. Kulkarni,
- 2) Surveying, Vol I and II, Dr B. C.Punmia
- 3) Surveying, Vol I and II, S. K. Duggal
- 4) Surveying, Vol-I, Arora K R, 1990

Course No	: PFE122	Course Title
Semester	: II	Credits

: Heat and Mass Transfer : 2 (1+1)

Syllabus

Theory

Concept, modes of heat transfer, thermal conductivity of materials, measurement. General differential equation of conduction. One dimensional steady state conduction through plane and composite walls, cylinder and spheres. Electrical analogy. Insulation materials. Fins, Free and forced convection. Newton's law of cooling, heat transfer coefficient in convection. Dimensional analysis of free and forced convection. Combined free and forced convection. Introduction. Absorptivity, reflectivity and transmissivity of radiation. Black body and monochromatic radiation, Planck's law, Stefan-Boltzman law, Kirchoff's law, grey bodies and emissive power.

Radiation exchange between black surfaces. Heat transfer analysis involving conduction, convection.

Types of heat exchangers, fouling factor, log mean temperature difference, heat exchanger performance, transfer units. Heat exchanger analysis restricted to parallel and counter flow heat exchangers. Steady state molecular diffusion in fluids at rest and in laminar flow, Fick's law, mass transfer coefficients. Fundamental transport processes.

Practical

Study of thermal conductivity apparatus, Determination of thermal conductivity of solid metal rod, Determination of thermal conductivity of solid composite wall, Numerical on thermal conductivity of cylinder and sphere, Study of tubular type heat exchanger, Study of plate type heat exchanger, Study of overall heat transfer coefficient in parallel flow heat exchanger and counter flow heat exchanger and numerical, Determination of heat transfer through insulated pipe, Determination of Stefan-Boltzman constant, Determination of emissivity of a given material, Study of mass transfer coefficient of solid and liquid, Visit to nearby dairy and food processing industry.

Lesson Plan -Theory

Lect. No.	Title	Book No.	Chapter / Art No.	Page No	Weightage (%)
1-2	Concept, modes of heat transfer, thermal conductivity of materials, measurement. General differential equation of conduction Fundamentals of Transport processes	2	1.1,1.2,1.3,1.4,1.6,1.9,2.2	1-5,6-8, 10-11, 26-30	10
3-4	One dimensional steady state conduction through plane and composite walls, cylinder and spheres	3	7.3,7.5, 7.7,7.9	250-264	30
5	Heat transfer analysis involving conduction, convection. Electrical analogy. Insulation materials, Fins.	2	1.11,1.12, 2.9, 2.11 Table 2.1	12-17, 48-50, 61-62 29	
6-7	Newton's law of cooling, heat transfer coefficient in convection	3	7.6,7.12,7.13,7.14	272-276	20
8	Dimensional analysis of free and forced convection.	4	4.4.4	285-290	-
9	Combined Free and Forced convection	1	7.12	372-376	
10	Absorptivity, reflectivity and transmissivity of radiation, Black body and monochromatic radiation, Planck's law.	3	7.15,7.16,7.17,7.18,7.19	404-411 422-423	20
11	Stefan-Boltzman law, emissive power, Kirchoff's law grey bodies	3	7.20,7.21,7.22	278-279	
12	Radiation exchange between black surfaces.	2	6.18	453-457	-
13-15	Fouling factor, types of heat exchangers, log mean temperature difference, Heat exchanger analysis restricted to parallel and counter flow, transfer units, heat exchanger performance,	1	10.3,10.4,10.5,10.6	559-575	20
16	Steady state molecular diffusion in fluids at rest and in laminar flow, Fick's law, Mass transfer coefficient	4	10.1, 10.1.1	595-600	

Practical Exercises

No.	Title
1	Study of thermal conductivity apparatus
2	Determination of thermal Conductivity of solid metal rod
3	Determination of thermal conductivity of solid composite wall
4	Numerical on thermal conductivity of cylinder and sphere
5	Study of tubular type heat exchanger
6	Study of plate type heat exchanger
7	Study of molecular diffusion in fluid at laminar flow
8	Study of overall heat transfer coefficient in parallel flow heat exchanger and
	counter flowheat exchanger and numerical
9	Determination of heat transfer through insulated pipe
10	Determination of Stefan-Boltzman constant
11	Determination of emissivity of a given material
12	Study of mass transfer coefficient of solid and liquid
13	Study of dimensional analysis of free and force convection
14	Study of fouling factor
15	Study of absorptivity, reflectivity and transmissivity of radiation
16	Visit to nearby dairy and food processing industry

Suggested readings Text Books

No.	Author	Title & Year	Publisher
1	J. P.Holman	Heat Transfer	Tata McGraw-Hill Education Pvt. Ltd. (Ninth Edition)
2	Gupta C .P. and Prakash R.	Engineering Heat Transfer	Nem Chand and Bros., Roorkee
3	P.L. Ballaney	Thermal Engineering	Khanna Publications, (Twenty fourth Edition)
4	R Paul Singh &Dennis R Heldman	Introduction to Food Engineering	Academic press (Fourth Edition)
Refei	ence Books		
1	Christie Geankoplis	Transport Processes and Uni Operation, Prentice-Hall of I (Third Edition)	
2	Incropera F. P. and De Witt D. P.	Fundamentals of Heat and M Transfer	IassJohn Wiley and Sons, New York.

Course No	: REE 122	Course Title	: Electrical Machines and Power Utilization
Semester: II		Credits	: 3(2+1)

Syllabus:

Theory:

Electro motive force, reluctance, laws of magnetic circuits, determination of ampere-turns for series and parallel magnetic circuits, hysteresis and eddy current losses, Transformer: principle of working, construction of single phase transformer, EMF equation, phasor diagram on load, leakage reactance, voltage regulation, power and energy efficiency, open circuit and short circuit tests, principles, operation and performance of DC machine (generator and motor), EMF and torque equations, armature reaction, commutation, excitation of DC generator and their characteristics, DC motor characteristics, starting of shunt and series motor, starters, speed control methods-field and armature control, polyphase induction motor: construction, operation, phasor diagram, effect of rotor resistance, torque equation, starting and speed control methods, single phase induction motor: double field revolving theory, equivalent circuit, characteristics, phase split, shaded pole motors, various methods of three phase power measurement; power factor, reactive and apparent power, Concept and analysis of balanced poly-phase circuits; Series and parallel resonance.

Practical:

To obtain load characteristics of d.c. shunt/series /compound generator; To study characteristics of DC shunt/ series motors; To study d.c. motor starters; To Perform load-test on 3 ph. induction motor & to plot torque V/S speed characteristics; To perform no-load & blocked —rotor tests on 3 ph. Induction motor to obtain equivalent ckt. parameters & to draw circle diagram; To study the speed control of 3 ph. induction motor by cascading of two induction motors, i.e. by feeding the slip power of one motor into the other motor; To study star- delta starters physically and (a) to draw electrical connection diagram (b) to start the 3 ph. induction motor using it. (c) to reverse the direction of 3 ph. I.M.; To start a 3-phase slip —ring induction motor by inserting different levels of resistance in the rotor ckt. and to plot torque — speed characteristics; To perform no load & blocked —rotor test on I ph. induction motor & to determine the parameters of equivalent ckt. drawn on the basis of double revolving field theory; To perform load —test on I ph. induction motor & plot torque —speed characteristics; To study power consumed in a three-phase circuit; Two lights in series controlled by one switch; Two lights in parallel controlled by one switch.

Lecture No.	Topics to be covered	Book No	Chapter No.	Article No.	Problem No
01	Electro motive force	1	6	6.21	
	reluctance, laws of magnetic circuits	1	6	6.22,6.23,6.24,6.25	

Teaching schedule theory

02	determination of ampere-turns for series and parallel magnetic circuits	1	6	6.26,6.27	
03	Transformer: principle of working	2	30	30.1	
04	EMF equation	2	30	30.6,30.7	30.1,30.2,30.3, 30.4
05-05	power and energy efficiency	2	30	30.28,30.29,30.30,30.	
07-08	open circuit and short circuit tests	2	30	30.19,30.20,30.22	
9-10	principle, operation and performance of DC Machine (generator)	2	24	24.1,24.2,24.3,24.31, 24.32	24.3,24.4,24.5
11-12	EMF equation of DC Generator	2	24	24.33	24.8,24.09
13-14	principles, operation and performance of DC machine (motor)	2	27	27.1,27.2,27.3,27.4, 27.5	27.1,27.2,27.3
15	DC motor characteristics,	2	27	27.12 27.13,27.14	
	Starters	2	28	28.19	
16	Speed control methods – field and armature control	2	28	28.1,28.2(i),(ii)	
17	Poly phase induction motor: construction,	2	32	32.2,32.3	
18-19	Operation	2	32	32.9,32.10,32.11	2.1,32.2,32.3,32.4,3 2.5
20-21	starting of 3-phase induction motor	2	33	33.9,33.10,33.11(a)	
22	speed control methods of 3-phase induction Motor	2	33	33.18(a) to 33.18 (d)	
23-24	single phase induction motor Characteristics, split- phase motor	2	34	34.1,34.2,34.4	
25-26	various methods of three phase power measurement	1	19	19.15,19.16,19.17,19. 25	19.31 to 19.33
27	power factor Active, reactive and apparent power	1	13	13.2, 13.4	
28-32	Concept and analysis of balanced poly-phase circuits	1	19	19.1,19.5 , 19.6,19.7,19.8, 19.09	19.1 to 9.6, 19.10 to19.13

Practical Exercises:

Exercise No.	Title of Practicals
1	To obtain load characteristics of d.c. shunt / series / compound generator.
2	To study d.c. motor starters.
3	To perform load-test on 3-phase induction motor .
4	To perform no-load & blocked —rotor tests on 3 ph. induction motor .
5	To study power consumed in a three-phase circuit.
6	Two lights in series controlled by one switch.
7	Two lights in parallel controlled by one switch.
8	To perform open circuit test on single phase transformer.
9	To perform short circuit test on single phase transformer.
10	To find the efficiency and voltage regulation of single phase transformer by direct loading.
11	To study speed control of d,c motor
12	To measure power factor of the given circuit.
13	To study voltage control method for speed control of three phase induction motor
14	To study voltage and current relationship for star connection.
15	To study voltage and current relationship for delta connection.

Suggested Reading

Text Books

- 1. Thareja B L &Theraja AK. 2005. A text book of Electrical Technology. Vol. I, S. Chand & Company LTD., New Delhi.
- Theraja B L & Theraja AK 2005. A text book of Electrical Technology. Vol. II, S.Chand & Company LTD., New Delhi.

Reference Books:

- Vincent Del Toro. 2000. Electrical Engineering Fundamentals. Prentice-Hall of India Private LTD., New Delhi.
- 2. Anwani M L. 1997. Basic Electrical Engineering. Dhanpat Rai & Co.(P) LTD. New Delhi.S

Course No.	:	FS 122	Course Title	:	Strength of Materials
Semester	:	II	Credits	:	2 (1+1)

Syllabus

Theory:

Slope and deflection of beams using integration techniques, moment area theorems and conjugate beam method. Columns and Struts. Riveted and welded connections. Stability of masonry dams. Analysis of statically intermediate beams. Propped beams. Fixed and continuous beam analysis using superposition, three moment equation and moment distribution methods. **Practical:**

To perform the tension test on metal specimen (M.S., C.I.), to observe the behaviour of materials under load, to calculate the value of E, ultimate stress, permissible stress, percentage elongation etc. and to study its fracture; To perform the compression test on; Concrete cylinders &cubes, C.I., M.S. & Wood specimens and to determine various physical and mechanical properties; To perform the bending test on the specimens; M.S. Girder, Wooden beam, Plain concrete beams & R.C.C. beam, and to determine the various physical and mechanical properties; To determine Young's modulus of elasticity of beam with the help of deflection produced at centre due to loads placed at centre& quarter points; To study the behaviour of materials (G.I. pipes, M.S., C.I.) under torsion and to evaluate various elastic constants; To study load deflection and other physical properties of closely coiled helical spring in tension and compression; To perform the Rockwell, Vicker's and Brinell's Hardness tests on the given specimens; To perform the Drop Hammer Test, Izod Test and Charpay's impact tests on the given specimens; To determine compressive & tensile strength of cement after making cubes and briquettes; To measure workability of concrete (slump test, compaction factor test); To determine voids ratio & bulk density of cement, fine aggregates and coarse aggregates; To determine fatigue strength of a given specimen; To write detail report emphasizing engineering importance of performing tension, compression, bending, torsion, impact and hardness tests on the materials.

Lect. No.	Торіс	Text Book	Article No.	Page No.	Weight- age, %	Unit
1-2	Simple stresses and strains, Stresses and strains in bars of varying sections	1	2.1 to 2.11 and 3.1 to 3.5	12 to 18 and 25 to 39	25%	Ι
3-4	Elastic constants	1	6.1 to 6.13	86 to 100		
5-8	Bending moment and shear force	1	13.1 to 13.9 and 13.11 to 13.12	286 to 292 296 to 304	25%	III
9-10	Bending stresses in simple beams	1	14.1 to 14.10	344 to 363		

Teaching Schedule

Lect. No.	Торіс	Text Book	Article No.	Page No.	Weight- age, %	Unit
11	Direct and bending stresses	1	17.1 to 17.4 and 17.7	385 to 389 and 398 to 400	25%	III
12	Deflection of beams –by integration method	1	19.1 and 19.3 to 19.7	463 to 474		
13-14	Riveted joints	1	29.1 to 29.25	664-680		
15-16	Columns and struts	1	32.1 to 32.5, 32.8 and 32.9 and 32.11 to 32.13	723-734	25%	IV

Practical Exercises:

Sr. No	Title
1	To perform tension test on mild steel bar.
2	To perform impact test on course aggregate.
3	To determine crushing strength of concrete cube.
4	To determine flexural strength of timber.
5	To determine Young's Modulus of elasticity of wire.
6	Determination of stiffness of helical spring.
7	Determination of modulus of rigidity of steel rod by torsion test.
8	To determine hardness of various metals.
9	To determine shear strength of mild steel bars using UTM.
10	Problems on shear force and bending moment.
11	Problems on simple bending stresses.
12	Problems on deflection of beams.
13	Problems on stability of dam.
14	Problems on design of riveted joints.
15	Problems on design of welded joints

Suggested readings

Author	Year	Title	Publisher	
Text Book				
R.S. Khurmi	2013	Strength of Materials (SI Units)	S. Chand and company ltd.,	
			Ramnagar, New Delhi	
Reference Books				
S. Timoshenko and D.H. Young	2012	Elements of Strength of Materials	East-West press private limited, New Delhi	
S. Ramamrutham	2012	Strength of Materials	DhanpatRai and Sons, New Delhi	
Junarkar S.B	2001	Mechanics of Structures (Vo-I)	Charotar Publishing House, Anand	

Course :	PHEY 121	Credit:	1(0+1)	Semester-II
Course title:	Physical Education and Y	loga		

Syllabus

Physical Education (Practical)

Introduction to physical education definition, objectives, scope, and importance; physical culture; Warming up - Need and requirement of first aid.Meaning and importance of Physical Fitness and Wellness; Physical fitness components -speed, strength, endurance, power, flexibility, agility, coordination and balance;Methods of Training; aerobic and anaerobic exercises; weight training, circuit training, Interval training, Fartlek training;

Skill of Volleyball, Rules & Regulation, Advance Skill of Volleyball, Specific Warming up,Skill of Football Rules & Regulations, Advance Skill of Foot ball & Specific Warming up, Skill of Kabaddi Rules & Regulations. Advance Skill of Kabaddi, Skill of Kho-Kho, Rules & Regulations. Advance Skill of Kho-Kho, & Specific Warming up,

Yoga (Practical)

Yoga- History, Meaning and importance, Role of yoga in life.Asans and indigenous way for physical fitness, and curative exercise.Introduction to asanas and its importance, pranayama, meditation and yogic kriya.Omkar, Yogic Suksma vyayamas,

Yogasan- Asanas in Standing posture (Tadasana, Vrikshasana, Padahastasana, Ardha-Chakrasana, Trikonasana), Sitting postures (Asanas viz: Bhadrasana, Vjrasana, Ardha-Ustrasana, Ushtrasana, sasakasana and Vakrasana), Prone postures (Makarasana, Bhujangasana and Salabhasana) and Supine posture (Setubandhasana, uttanapadasana, Ardha-halasana, and Pavanamuktasana, Shavasana),

Suryanamaskar, Yognidra, Kapalbhati, Pranayam, Meditation in different mudras

Exercise	Торіс	Weightage (%)
1	Introduction to physical education definition, objectives, scope, and importance; physical culture; Warming up - Need and requirement of first aid.	04
2	Meaning and importance of Physical Fitness and Wellness; Physical fitness components -speed, strength, endurance, power,flexibility, agility, coordination and balance; Methods of Training; aerobic and anaerobic exercises; weight training, circuit training, Interval training, Fartlek training;	06
3	Skill of Volleyball, Rules & Regulation, Advance Skill of	06

Teaching Schedule (Practical)

Exercise	Торіс	Weightage (%)
	Volleyball, Specific Warming up,	
4	Skill of Football Rules & Regulations, Advance Skill of Football & Specific Warming up	06
5	Skill of Kabaddi Rules& Regulations. Advance Skill of Kabaddi,Skill of Kho-Kho, Rules & Regulations. Advance Skill of Kho- Kho, & Specific Warming up	10
6	Skill of Basket ball Rules & Regulation, Advance skill of Basketball & Specific warming up	06
7	Skill of Table tennis, Rules & Regulations, Advance skill of Table tennis. Sikll of Badminton, Rules & Regulations. Advanceskill of Badminton, Specific Warming up.	06
8	Skill of Athletics, Long and Short Distance running, Sill of Athletics Jumping events, Throwing events	06
9	Yoga-History, Meaning and importance, Role of yoga in life	06
10	Omkar, Yogic kriya, Yogic Suksma vyayamas	06
11	Yogasana- in Standing posture (Tadasana, Vrikshasana,Padahastasana, Ardha-Chakrasana, Trikonasana),	06
12	Yogasana- in Sitting postures (Asanas viz: Bhadrasana, Vjrasana, Ardha-Ustrasana, Ushtrasana, sasakasana and Vakrasana)	07
13	Yogasana- in Prone postures (Makarasana, Bhujangasana and Salabhasana)	06
14	Yogasana- in Supine posture (Setubandhasana, Uttanapadasana, Ardha-halasana, and Pavanamuktasana, Shavasana)	06
15	Suryananskars, Yognidra	06
16	Kapalbhati, Pranayam, Meditation in different mudras,	07
	Total	100

Suggested Reading:

- 1) O.P. Aneja. Encyclopedia of Physical education, sports and exercise science (4volumes).
- 2) Anil Sharma. Encyclopedia of Health and Physical Education (7 Volumes).
- 3) N V Chaudhery, R Jain. Encyclopedia of Yoga Health and Physical Education (7Volumes).
- 4) Pintu Modak, O P Sharma, Deepak Jain. Encyclopedia of Sports and Games withlatest rules and regulations (8 volumes).

- 5) Physical Education And Recreational Activities by Deepak Jain, Year of Pub.:2011
- 6) Dimensions of Physical Education by Anil Sharma, Year of Pub.: 2011
- 7) Physical Fitness by Vijaya Lakshmi Year of Pub.: 2005
- Research Process In Physical Education And Sports: An Introduction by K. G.Jadhav, Sachin B. Pagare and Sinku Kumar Singh, Year of Pub.: 2011
- 9) Sports Training And Biomechanics In Physical Education by Sinku Kumar SinghYear of Pub.: 2011
- 10) Test, Measurement and Evaluation in Physical Education by P. L. Karad YearofPub.: 2011
- 11) Foundations of Physical Education, Exercise Science, and Sport by Deborah A. Wuest, Charles A. Bucher
- 12) Light on Yoga by B. K. S Iyangar, Publication: Schocken, Edn. 31st: 1995,
- 13) The Key Muscles of Hatha Yoga by Ray Long, Publication: Bandh Yoga, Edn.; 3rd: 2006
- 14) Hatha Yogas Pradipika by Yogi Swatmarama, Publishcation: Bihar School of Yoga, Edn.
 6th :1998
- 15) Yoganidra by swami saraswati, pblication, yoga publication trust, munger, edn 3rd1976
- Yog Darshan of Patanjali by Harikrishna Das Goyenka, Publication: Geeta PressGorakhpur, Year: 2013
- 17) Patanjali Yogasutras by Swami Premeshanand, Publication: Advaita Asharm, Edn.: 2015

Course : NSS 121

Course title: National Service Scheme

Credit: 1(0+1)

Syllabus

Teaching Schedule (Practical)

Practical : Introduction to NCC, defense services, system of NCCtraining, foot drill, sizing, forming up in three ranks, open and close order march, dressing, getting on parade, dismissing and falling out, saluting, marching, arms drill, shoulder arm, order arm, present arm, guard of honour, ceremonial drill, weapon training – rifle bayonet, light machine gun, sten machine carbine, introduction and characteristic stripping, assembling and cleaning, loading, unloading and firing. Field craft, visual training, targets, judging distance, fire discipline and fire control orders, battle craft, field signals, description of ground, section formation, section battle drill, scouts and patrols, ambush, field engineering, map reading, conventional signs, grid systems, use of service protractor, prismatic compass and its use, self-defense, general principles, precautions and training, attacks and counter attacks, marching and searching, first aid, hygiene and sanitation, civil defense, leadership and NCCsong.

Exercise	Торіс	Weightages (%)
1.	Introduction and basic components of NSS: Orientation: history, objectives, principles, symbol, badge; regular programmes under NSS, organizational structure of NSS,	7
2.	Code of conduct for NSS volunteers, points to be considered by NSS volunteers awareness about health	7
3.	NSS programmes and activities- Concept of regular activities, special camping, day camps, basis of adoption of village/slums, conducting survey,	7
4.	Analysing guiding financial patterns of scheme, youth programme/ schemes of GOI,	7
5.	Coordination with different agencies and maintenance of diary	6
6.	Understanding youth -Definition, profile, profile, categories, issues and challenges of youth;	6
7.	Opportunities for youth who is agent of the social change	6
8.	Community mobilization-Mapping of community stakeholders, designing the message as per problems and their culture;	6
9.	Identifying methods of mobilisation involving youth-adult partnership	6
10.	Social harmony and national integration, Indian history and culture	6
11.	Role of youth in nation building, conflict resolution and peace- building	6
12.	Volunteerism and shramdan, Indian tradition of volunteerism, its need, importance, motivation and constraints;	6
13.	Shramdan as part of volunteerism	6

14.	Citizenship, constitution and human rights. Basic features of constitution of India, fundamental rights and duties	6
15		6
15.	Human rights, consumer awareness and rights and rights to information	0
16.	Youth and yoga- History, philosophy, concept, its impacts, yoga as a tool for healthy lifestyle, preventive and curative method.	6
	Total	100

Suggested Readings:

- 2. National Service Scheme: A Report, by KhwajaGhulamSaiyidain. Published by Ministryof Education, Govt. of India, 1961.
- 3. Training and consultancy needs in national service scheme, by N. F. Kaikobad, Krishan K.Kapil. Published by Tata Institute of Social Sciences, 1971.
- National Service Scheme: guide-lines to project-masters, by Andhra University, Dept. of Sociology & Social Work. Published by Dept. of Sociology & Social Work, Andhra University, 1971.
- National Service Scheme in Gujarat: An Evaluation Report for the Year 1986-87, by TataInstitute of Social Sciences Training Orientation & Research Centre (NSS), India, India. Dept. of Youth Affairs and Sports.Published by The Centre, 1987.
- National Service Scheme in Maharashtra: An Evaluation Report for the Year 1986-87, by Tata Institute of Social Sciences Training Orientation & Research Centre (NSS), India, India Dept. of Youth Affairs and Sports. Published by The Centre, 1988.

National Service Scheme in India: A Case Study of Karnataka, by M. B. Dilshad. Published by Trust Publications, 2001.

SEMESTER : III

Course No. BS-MATH 233

Title: Engineering Mathematics-III

Semester: III (New)

Credits 3(2+1)

Syllabus

Theory:

Numerical Techniques :Finite differences, factorial notation, various difference operators and their relationships, interpolation with equal intervals- Newton's forward and backward interpolation formula. Bessel's and Stirling's difference interpolation formulae. Interpolation with unequal intervals-Lagrange's interpolation formula. Newton's divided difference formula.

Numerical differentiation and integration. First and second order derivative by using Newton's forward and backward interpolation, Maxima and Minima of tabulated function, Numerical Integration: by Trapezoidal rule and by Simpsons rule, applications of Simpson's rule

Difference equations and their applications. Difference equation, Order of difference equation, Solution of linear difference equation, Linear difference equations, Rules for finding complementary function, Rules for finding particular integral and applications

Numerical solutions of ordinary differential equations: by Picard's, Taylor's series, Euler's and modified Euler's method and Runge-Kutta method.

Laplace transformation: Laplace Transform and Inverse Laplace transform and its applications to the solutions of ordinary and simultaneous differential equations.

Practical

Applications of Interpolation with equal intervals, Applications of Interpolation with unequal intervals, Applications of Numerical differentiation, Applications : Maxima and Minima, Applications of Numerical integration, Applications of Homogeneous Difference equations, Applications of Non-homogeneous Difference equations, Applications of Numerical solution of ordinary differential equations-Picard's Method, Applications of Taylors method, Applications of Numerical solution of ordinary differential equations-Euler's, Applications of Runge-Kutta method, Applications of Laplace transformations, Application to solution of ordinary differential equations, Applications of Solution to solution of ordinary differential equations, Applications of Solution to solution of ordinary differential equations, Applications of Solution to solution of ordinary differential equations, Application to solution of Solution of Solution of Solution of Solution, Solution Solution, Solution of Solution Solution, Solution Solution, Sol

Teaching Schedule – Theory with weightages (%)

Lect. No.	Topics to be covered	weightages (%)
Finite Di	fferences and Interpolation	
1-6	Finite differences	
	Factorial Notations	170/
	Various difference operator and their relationship	17%
	Newton's forward and backward interpolation formula	
	Lagrange's interpolation formulae for unequal intervals	
Numeric	al Differentiation & Integration	
7-12	First and second order derivative by using Newton's	
	forward and backward interpolation	
	Maxima and Minima of tabulated function	22%
	Numerical Integration: by Trapezoidal rule and by	
	Simpsons rule, applications of Simpson's rule	
	ce Equations and their Applications	
13-17	Difference equation, Order of difference equation,	
	Solution of linear difference equation	-
	Linear difference equations	15%
	Rules for finding complementary function	
	Rules for finding particular integral and applications	
Numeric	al Solution of Ordinary Differential Equations	
18-20	Picard's method	
	Taylor's series method	8%
	Euler's method	
Laplace '	Transforms	
21-33	Definition, Laplace Transform of elementary functions	
	Properties of Laplace Transforms	
	Laplace Transform of periodic function	
	Laplace Transform of derivatives	
	Laplace Transform of an integral	
	Laplace Transform of function multiplied by t ⁿ	38%
	Laplace Transform of function divided by t	30%
	Inverse Laplace Transform	1
	Convolution Theorem(Without Proof)	1
	Applications of LT. Solving ordinary differential equations	1
	Solving Simultaneous differential equations using Laplace	1
	Transformation.	

Practical Exercise

- 1. Applications of Interpolation with equal intervals
- 2. Applications of Interpolation with unequal intervals
- 3. Applications of Numerical differentiation
- 4. Applications : Maxima and Minima
- 5. Applications of Numerical integration
- 6. Applications of Homogeneous Difference equations
- 7. Applications of Non-homogeneous Difference equations
- 8. Applications of Numerical solution of ordinary differential equations-Picard's Method
- 9. Applications of Taylors method
- 10. Applications of Numerical solution of ordinary differential equations-Euler's
- 11. Applications of Runge-Kutta method
- 12. Applications of Laplace transformations
- 13. Applications of Inverse Laplace transformation
- 14. Applications of Convolution theorem
- 15. Application to solution of ordinary differential equations.
- 16. Application to solution of simultaneous differential equations

Suggested Reading

Text Book

1. Dr. Shinde K. J. et.al. A text book of Agricultural Engineering Mathematics-III

Reference Book

1. Grewal B S. 2015. Higher Engineering Mathematics. Khanna Publishers Delhi.(43rd Edition)

Course No: FMPE- 234

Titles: Farm Power and Automotive Engines

Sem: III (New)

Credit: 2 (1+1)

Theory:

Sources of farm power -conventional & non-conventional energy sources. Classification of tractors and IC engines. Review of thermodynamic principles of IC (CI & SI) engines and deviation from ideal cycle. Indicator diagram. Study of engine components their construction, operating principles and functions. Study of engine stroke and comparison of 2 stroke and 4 stroke engine cycle and CI and SI engines. Study of engine valve systems, valve mechanism, valve timing diagram and valve clearance adjustment. Study of importance of air cleaning system. Study of types of air cleaners. Study of fuel supply system. Study of Fuel, properties of fuels, calculation of air fuel ration. Study of tests on fuel for SI and CI engines. Study of detonation and knocking in IC engine. Study of carburetion system, carburetors and their main components. Study of fuel injection systeminjection pump, their types, working principles. Fuel injector nozzles, their types and working principles. Engine governing- need of governor, governor types. Study of lubrication system- need, types, functional components. Study of lubricants- Physical properties, additives and their application. Engine cooling system- need, cooling methods and main functional components Additives in the coolant and properties. Study of ignition system of SI engines. Study of electrical system including battery, starting motor, battery charging, cut-out etc.

Practical:

Introduction to different systems of IC engine; Engine parts and functions, working principles etc; Valve system – study, construction and adjustments;

Air cleaning system; Fuel supply system of SI engine; Diesel injection system & timing; Cooling system, governor; Lubricating system & adjustments; Ignition system; electrical system; Calculation on diff. horse power and cylinder pressure, specific fuel consumption and power requirement & efficiencies, air fuel ratio etc.

Lecture,	Торіс	Book/Art.No./P
No.		age No.
1	1 Sources of Farm power,	
	Conventional & non Conventional energy	S:2.1-2.6
2-3	Classification of tractors, Otto cycle & diesel cycle, their	L:1-8
	efficiencies Causes for deviation from Ideal & PV diagram,	L:37:45
	& their problems, Air cycles.	M-2.1, J-1.1
4	Principle & working of four stroke & two-stroke cycle	J-1.3
	engine	
5	IC engine components, operating principle, their function	J-1.2
	and their construction	
6	Valve and valve mechanism, Valve arrangement,	S: 3.9
	Firing order, firing interval, power balance and firing order	J: 4.2-4.5
	of engines, valve timing diagram	J: 5.11.5
7	Intake & exhaust system, types of air cleaners	J:9.1-9.8
8-9	Fuel system : Fuel supply in petrol engine- Carburetor &	M: 88-90
	it's working principle	S:5.3
	Fuel supply system of diesel engine, fuel filter, injector	J-6.3 to 6.4 (75-
	nozzles, their types and working principles.	83), 6.51-6.53
	Fuel injection system, Combustion chamber,	S:5.5-5.6
10	Cooling system: Cooling methods and main functional	J-8.1-8.3
	components	
11	Lubrication system- needs, types, functional components.	J: 7.6-7.8
	Splash & forced feed system. Combination of both, oil	

Lesson Plan

	filters & other accessories.	
12	Ignition systems:	S: 8.1-8.6
	Battery ignition & its components	
	Magneto ignition, other methods of ignition	
13	Engine principles of governor	S: 6.1-6.5
	Introductions of Principles of governor	M: Fig 3.20
	Classifications of governing system, hit & miss & throttle	
	leave system. (Centrifugal governor, pneumatic & hydraulic	
	governor) Governor regulations & governor hunting.	
14	Electrical system including battery chemical activity,	J:20.1.1-20.1.07
	battery charging, starting motor, cut-out etc. (in brief)	20.2.1-
		20.2.2.1,20.2.2.2
		; 2.2.3-2.2.4
		2.3.2-2.3.4
15	Fuel properties & qualities of fuel, tests on fuel for SI and	L-Pg 54-75
	CI engine, Detonation of IC engine	S-5.1
16	Properties of coolants, anti freeze material, anti corrosion	L: Pg.175-178
	materials,	
	Types of lubricants, Oil tests	S:Pg.111-112
	Physical properties, additives and their application.	J-7.4-7.5

Teaching shedule theory with weightages (%)

Unit	Lecture, No.	Торіс	Weightage %
Ι	1	Sources of Farm power, Conventional & non Conventional energy	15
	2-3	Otto cycle & diesel cycle, their efficiencies Causes for deviation from Ideal & PV diagram, & their problems, Air cycles.	
II	4	Principle & working of four stroke & two-stroke cycle engine	30
	5	IC engine components, operating principle, their function and their construction	
	6	Valve and valve mechanism, Valve arrangement, Firing order, firing interval, power balance and firing order of engines, valve timing diagram	
III	7	Intake & exhaust system, types of air cleaners	20
	8-10	Fuel properties & qualities of fuel, tests on fuel for SI and CI engine, Detonation of IC engine	
		Fuel system :Fuel supply in petrol engine- Carburetor & it's working principle	
		Fuel supply system of diesel engine, fuel filter, injector nozzles, their types and working principles. Fuel injection system, Combustion chamber,	
	11	Engine principles of governor Introductions of Principles of governor Classifications of governing system, hit & miss & throttle leave system. (Centrifugal governor, pneumatic & hydraulic governor) Governor regulations & governor hunting.	

IV	12	Properties of coolants, anti freeze material, anti corrosion materials, Cooling system: Cooling methods and main functional components	20
	13-14	Types of lubricants, Oil tests Physical properties, additives and their application. Lubrication system- needs, types, functional components. Splash & forced feed system. Combination of both, oil filters & other accessories.	
V	15-16	Ignition systems: Battery ignition & its components Magneto ignition, other methods of ignition Electrical system including battery chemical activity, battery charging, starting motor, cut-out etc. (in brief)	15

Practical Exercises

Ex. no	Title	
1	To study working principle of two and four stroke engines	
2-4	Dismantling and assembling of diesel engine	
5	To study valve operating system, FI & FO valve timing diagram, valve clearance	
	adjustment.	
6	To study intake and exhaust of IC engine	
7	To study fuel system of Spark Ignition engine	
8	To study fuel system of Compression Ignition engine	
9	To study cooling system of tractor	
10	To study lubrication system of tractor engine	
11	To study ignition system of IC engine	
12	To study diff. types of governors and methods of governing	
13	To study electrical system of tractor.	
14-15	To study engine terminology, Calculation on diff. horse power and cylinder	
	pressure specific fuel consumption and power requirement & efficiencies, air furl	
	ratio	
16	To study the physical properties of oil, fuel	

Suggesteed reading

Text Book:

- 1. Elements of Agril. Engineering by Dr. Jagdiswar Sahay-(S) fourth edition 2004
- 2. Farm tractor maintenance & repair by SC. Jain & C R.Rai (J) second Reprint, 1999
- 3. Principles of Agril. Engineering Vol-I By AM Michael and TP Ojha (M)-2nd Edn.
- 4. Tractor and their power unit by JB Liljedahl & et al. (L) (4 authors books 1st Edn.1997)

Reference Book :

- 1. Farm machines and Equipment by C. P. Nakra, Dhankpat Rai & Sons (N) Edition 1990.
- 2. Fundamentals of IC Engines by Paul W. Gill, James H. Smith Eugene Ziury-(G) (revised 4thEdn)

Syllabus

Theory:

Elements, links, pairs, kinematics chain, and mechanisms. Classification of pairs and mechanisms. Lower and higher pairs. Four bar chain, slider crank chain and their inversions. Types of gears. Law of gearing, velocity of sliding between two teeth in mesh. interference and undercutting. Introduction to helical, spiral, bevel and worm gear. Simple, compound, reverted and epicyclic trains. Determining velocity ratio by tabular method. Turning moment diagrams, co-efficient of fluctuation of speed and energy, weight of flywheel, flywheel applications. Types of governors, constructional details and analysis of Watt. Porter, Pronell governors, Balancing of rotating masses in one and different planes. Partial primary balancing of reciprocating masses.

Practical:

Demonstration in mechanisms study using models; Analysis of 4-bar mechanism, slides crank mechanism and their inversions; Determination of velocity and acceleration using graphical (relative velocity and acceleration) method with examples. Study of gears and gear trains and motion analysis of some practical complex compound gear train; Motion analysis Epicyclic gear trains using tabular and formula methods; To design a compound gear train and epicyclic gear train for a desired speed ratio; Practical test; To study the flywheel and governor action in laboratory; To graphically synthesize the cam profile for a desired standard follower motion; Study on the cam follower demonstration machine for follower displacement as a function of cam rotation angle and phenomenon of follower jump; Demonstration of static and dynamic balancing in the laboratory.

Sr.	Lecture	Торіс	Art.No.	Page No.
No.	No.	-		U
1	1 to 3	Element, link, pairs, Kinematics and mechanism,	5.2-5.8	94-97,
		classification of pairs and mechanisms, lower	5.11	101-102
		and higher pairs, four bar chain, slider crank	5.15-5.22	105-115
		chain and their inversion (related problems)		
2	4 and 6	Types of gears, law of gearing, velocity of	12.4-12.11	384-393
		sliding between two teeth in mesh, involutes and		
		cycloid profile for gear teeth, nomenclature,	12.17 -12.19	396-397
		interference and under cutting. Introduction to		405-406
		spiral, bevel and worm gear. (related problems.)		
3	7 and 8	Simple, compound, reverted and epicyclic gear	13.2-13.11	428-463
		trains. Determination of velocity ratio by tubular		
		method. (related problems.)		
4	9 and 10	Turning moment diagram, coefficient of	16.3,	567
		fluctuations of speed and energy, weight of	16.5 to 16.10	568-573
		flywheel, flywheel application. (related		
		problems)		
5	11 and 13	Types of governor, constructional details and	18.2 - 18.7	653-678
		analysis of watt, Proter and Proell governor		
		(related problems.)		
6	14 and 15	Balancing of rotating masses (related problems)	21.2 - 21.5	833-839
7	16	Balancing of reciprocating masses (related	22.2 t-22.3	859-861
		problems)		

Lesson Plan

Practical

Sr. No.	Practical No.	Name of practical
1	1-2	Study of four bar and slider crank mechanism and their inversion
2	3-6	Determination of velocity and acceleration in mechanism (relative velocity method). Determination of velocity in mechanism (instantaneous centre method).
3	7 - 9	Determination of train values of different types of gear trains
4	10 -12	Study of governor and flywheel in laboratory
5	13 - 15	Construction of cam profile for different motions of follower
6	16	Problem on balancing of rotating and reciprocating masses

Teaching schedule- Theory with weightages (%)

Unit	Lecture	Topic	Weightages
No	No.		
1	1 to 3	Element, link, pairs, Kinematics and mechanism,	15
		classification of pairs and mechanisms, lower and higher	
		pairs, four bar chain, slider crank chain and their	
		inversion (related problems)	
2	4 and 6	Types of gears, law of gearing, velocity of sliding	40
		between two teeth in mesh, involutes and cycloid profile	
		for gear teeth, nomenclature, interference and under	
		cutting. Introduction to spiral, bevel and worm gear.	
		(related problems.)	
	7 and 8	Simple, compound, reverted and epicyclic gear trains.	
		Determination of velocity ratio by tubular method.	
		(related problems.)	
3	9 and 10	Turning moment diagram, coefficient of fluctuations of	15
		speed and energy, weight of flywheel, flywheel	
		application. (related problems)	
4	11 and 13	Types of governor, constructional details and analysis of	15
		watt, Proter and Proell governor (related problems.)	
5	14 and 15	Balancing of rotating masses (related problems)	15
	16	Balancing of reciprocating masses (related problems)	

Note: The theory paper is to be set on the basis of 60 % theory and 40 % numeric (problems)

Suggested readings

Text Book:

1. Theory of Machines – R.S. Khurmi and J.K. Gupta (14th Edition, 2010) **Reference books:**

- 1. Theory of Machines Thomas Beven
- 2. Theory of Machines Balaney P L
- 3. Theory of Mechanism and Machines JagdishLal
- 4. Theory of Machine Rattan S B
- 5. Mechanism and Machine Theory- Rao J S and Dukkipatti R V

Course No.: SWCE-232

Semester: III

Course Title: Soil Mechanics Credits: 2(1+1)

Syllabus

Theory:

Introduction of soil mechanics, field of soil mechanics, phase diagram, physical and index properties of soil, classification of soils, effective and neutral stress, elementary concept of Boussinesq and Wester guards analysis, new mark influence chart. Seepage Analysis; Ouick condition-two dimensional flow-Laplace equation, Velocity potential and stream function, Flow net construction. Shear strength, Mohr stress circle, theoretical relationship between principle stress circle, theoretical relationship between principal stress, Mohr coulomb failure theory, effective stress principle. Determination of shear parameters by direct shear test, triangle test & vane shear test. Numerical exercise based on various types of tests. Compaction, composition of soils standard and modified protector test, abbot compaction and Jodhpur mini compaction test field compaction method and control. Consolidation of soil: Consolidation of soils, one dimensional consolidation spring analogy, Terzaghi's theory, Laboratory consolidation test, calculation of void ratio and coefficient of volume change, Taylor's and Casagrande's method, determination of coefficient of consolidation. Earth pressure: plastic equilibrium in soils, active and passive states, Rankine's theory of earth pressure, active and passive earth pressure for cohesive soils, simple numerical exercises. Stability of slopes: introduction to stability analysis of infinite slope and finite slopes friction circle method, Taylor's stability number.

Lectur	Торіс	Boo	Article	Weightage
e		k	No.	S
No.		No.		(%)
1	Introduction of soil mechanics, field of soil mechanics.	1	1.1, 1.3,	
2, 3, 4	Soil as a three phase system, voids ratio, porosity and	1.	2.1, 2.4,	25
	degree of saturation, functional relationship and		2.6	
	numerical			
5,6	Index properties of soil: water content, specific gravity,	1.	3.1, 3.2,	
	particle size distribution, consistency limits, in-situ		3.3, 3.4,	
	density and density index,		3.10, 3.13	30
7	Classification of soils, particle size classification and	1.	4.1, 4.2,	
	textural classification		4.3	
8,9	Compaction, Standard Proctor Test, Modified Proctor	1	17.1, 17.2,	
	Test, Abbot compaction test, Jodhpur Mini-Compaction		17.3, 17.6,	
	test, Field compaction methods and field compaction		17.7, 17.8,	20
	control.		17.10	
10,11	Consolidation of soils, one dimensional consolidation	1	15.1, 15.2,	

Teaching Schedule- Theory with weightages (%)

	spring analogy, Tergazi's theory of one dimensional		15.5, 15.7,	
	consolidation, laboratory consolidation test, calculation		15.8	
	of voids ratio and coefficient of volume change			
12,13	Effective stress principle, Determination of shear	1	18.4,18.5,1	
	parameters by direct shear test and numericals.		8.6	
14, 15	Earth pressure: plastic equilibrium in soils :active and	1	20.1, 20.2,	
	passive states, Rankine's theory of earth pressure, active		20.4, 20.5,	25
	earth pressure for cohesive soils, passive earth pressure		20.6	
	for cohesive soils			
16	Stability of slopes: stability analysis of infinite slopes	1	23.1, 23.2,	

Practical Exercises

Exercise No.	Title
1.	Determination of water content of soil by oven drying method.
2.	Determination of specific gravity of soil by pycnometer method.
3.	Determination Water content of soil by pycnometre method.
4.	Determination of field density of soil by core cutter method.
5.	Determination of field density of soil by sand replacement method.
6.	Mechanical analysis of soil by sieving.
7.	Determination of grain size distribution by hydrometer method.
8.	Determination of liquid limit by Casagrande's method;
9.	Determination of plastic limit of soil.
10.	Determination of shrinkage limit of soil.
11.	Determination of permeability by constant head method;
12.	Determination of permeability by variable head method;
13.	Determination of compaction properties of soil by standard proctor test.
14.	Determination of unconfined compression test parameters.
15.	Determination of triaxial shear strength of soil
16.	Determination of consolidation properties of soils.

Suggested readings

Text Book:

 Punmia, B. C., Jain, A. K. and Jain A. K. 2005. Soil Mechanics and Foundations.Laxmi Publications(P) Ltd. New Delhi.

Reference Books:

- RanjanGopal and Rao, A. S. R. 1993. Basic and Applied Soil Mechanics. Welley Easters Ltd., New Delhi.
- 2. Singh Alam. 1994. Soil Engineering Vol. I. CBS Publishers and Distributions, Delhi.

Course No.: SWCE-233 Semester: III Course Title: Watershed Hydrology Credits: 3(2+1)

Syllabus

Theory

Hydrologic cycle, precipitation and its forms, rainfall measurement and estimation of mean rainfall, frequency analysis of point rainfall. Mass curve, hyetograph, depth-area-duration curves and intensity-duration-frequency relationship. Hydrologic processes-Interception, infiltration - factors influencing, measurement. Evaporation - Estimation and measurement. Runoff - Factors affecting, measurement, stage - discharge rating curve, estimation of peak runoff rate and volume, Rational method, Cook's method and SCS curve number method. Hydrograph - Components, base flow separation, unit hydrograph theory. Stream gauging - discharge rating curves, flood peak, design flood and computation of probable flood. Flood routing – channel and reservoir routing. Drought – classification, causes and impacts, drought management strategy.

Practical

Visit to meteorological observatory and study of different instruments. Design of rain gauge network. Exercise on intensity - frequency - duration curves. Exercise on depth - area - duration and double mass curves. Analysis of rainfall data and estimation of mean rainfall by different methods. Exercise on frequency analysis of hydrologic data and estimation of missing data, test for consistency of rainfall records. Exercise on computation of infiltration indices. Computation of peak runoff and runoff volume by Cook's method and rational formula. Computation of runoff volume by SCS curve number method. Study of stream gauging instruments - current meter and stage level recorder. Exercise on geomorphic parameters of watersheds. Exercise on runoff hydrograph. Exercise on unit hydrograph. Exercise on synthetichydrograph. Exercise on flood routing.

Topic Page No. Weightage Lect. Book Article No. No. No. S (%) Introduction, Scope of Hydrology 1-3,11-14 1 2 1 3.1 24-25 Hydrologic cycle 2 Precipitation-forms, Rainfall 2 16-21/39-40 measurement, mass curve 4 2.1 13-14 1 3.3,3.9 26-34 3 Hyetograph, mean rainfall depth. 2 28-35, 39 Adequacy of raingauge, point 4 3.10,3.11,3.1 46-54 precipitation, Mean Areal 2 precipitation. Intensity-Duration relationship, 4 3 87-89 3.8 30 Intensity-Duration frequency relationship, Depth Area duration 4 60-68 relationship, plotting positions. Frequency Analysis, 5 Estimation of missing data, Test of 4 3.7, 3.8 36-45 consistency of rainfall records. Hydrologic Losses (Interception, 4 6-8 4.1, 4.2, 4.3, 82-88, 90-94, infiltration, Evaporation, Evapo-4.6, 4.9.2, 101-109, 115transpiration): Estimation & 4.10, 4.12, 124, 135-138 Measurement 2 62-68 9 Geomorphology of watershed, 2 99-103 stream number stream length, stream slope Horton law, 10-11 Runoff-factors affecting runoff 2 108,186-194, -4 Measurement: Stage & velocity, -253-259 rating curve Estimation of peak runoff rate, 2 12-13 109-112 30 _ rational method, Cook's method, 36-38 1 3.11 SCS method; Numericals on above 4 5.2.1, 5.2.2 151-162 5 29-36 2.6 4 14-15 5.2.3 Curve Number method 162-166 (estimation of runoff volume) 1 39-43 5 44-48 Numericals on above 2 16-17 Hydrograph, Components. 121-129 4 Base flow separation. 6.1,6.4 182-184, 191-193 18 Unit Hydrograph theory, Unit 4 193-208 6.6 hydrograph of different duration 19-21 Examples/Numericals on above. 2 148-157 -Distribution hydrograph. 25 22-23 Synthetic Unit Hydrograph(Snyder 4 6.7 208-217 Method) Numericals on above 24-25 Dimensionless Unit Hydrograph 4 217-220 6.8

Teaching Schedule – Theory with weightages (%)

26-27	Head water flood control- methods	2 4	- 8.3	258-272 290-297	
28-29	Flood routing, graphical method of Reservoir Flood Routing	4	9.1-9.3, 9.8	310-311, 328	15
30	Hydrology of dryland areas- drought & its classification	4	11.1,11.2,11. 4, 11.5	395-399 401-402	
31-32	Introduction to watershed management & planning	1	28.1- 28.3,28.9	556-558 565-567	

Practical Exercises

Exercise	Title
No.	
1	Visit to meteorological observatory to study different instruments.
2	Study of different types of raingauges
3	Analysis of raingauge charts
4	Checking of consistency of rainfall data
5	Estimation of average rainfall depth by different methods
6	Probability analysis of rainfall data by Weibull's method
7	Estimation of peak runoff rate by rational method.
8	Estimation of peak runoff rate by Cook's method.
9	Computation of runoff volume by Curve Number method.
10	Study of stream gauging instruments (Stage level recorder and current meter).
11	Study of base flow separation methods
12	Development of DRH from stage hydrograph.
13	Development of unit hydrograph.
14	Development of Dimensionless Unit Hydrograph
15	Study of different flood routing methods for reservoir flood routing
16	Study of different geomorphologic characteristics of watershed

Suggested readings

Text Books:

- 1. Land and Water Management Engineering by V.V.N. Murthy, Kalyani Publishers, New Delhi, 1998 (2nd Ed.).
- 2. Hydrology by H.M. Raghunath, Wiley Eastern Limited, 1997.
- 3. Applied Hydrology by K.N. Mutreja, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1995 (4th Ed.).
- 4. Watershed Hydrology by R.Suresh, Standard Publishers Distributors, New Delhi-6, 1997 (1st Ed.).
- 5. Manual of Soil and Water Conservation Practices By G. Singh, C. Venkataramanan, G. Sastry, and B.P. Joshi.

Course No.	:	IDE-231	Course Title	:	Fluid Mechanics and Open
Semester	:	III	Credits	:	Channel Hydraulics 3(2+1)

Syllabus:

Theory:

Properties of fluids: Ideal and real fluid. Pressure and its measurement, Pascal's law, pressure forces on plane and curved surfaces, centre of pressure, buoyancy, meta centre and meta centric height, condition of floatation and stability of submerged and floating bodies; Kinematics of fluid flow: Lagrangian and Eulerian description of fluid motion, continuity equation, path lines, streak lines and stream lines, stream function, velocity potential and flow net. Types of fluid flow, translation, rotation, circulation and vorticity, Vortex motion; Dynamics of fluid flow, Bernoulli's theorem, venturimeter, orifice meter and nozzle, siphon; Laminar flow: Stress strain relationships, flow between infinite parallel plates both plates fixed, one plate moving, discharge, average velocity; Laminar and turbulent flow in pipes, general equation for head loss Darcy, Equation, Moody's diagram, Minor and major hydraulic losses through pipes and fittings, flow through network of pipes, hydraulic gradient and energy gradient; Flow through orifices (Measurement of Discharge, Measurement of Time), Flow through Mouthpieces, Flow over Notches , Flow over weirs, Chezy's formula for loss of head in pipes, Flow through simple and compound pipes, Open channel design and hydraulics: Chezy's formula, Bazin's formula, Kutter's Manning's formula, Velocity and Pressure profiles in open channels, Hydraulic jump; Dimensional analysis and similitude: Rayleigh's method and Buckingham's 'Pi' theorem, types of similarities, dimensional analysis, dimensionless numbers. Introduction to fluid machinery.

Practical:

Study of manometers, Study of pressure gauges, Verification of Bernoulli's theorem, Determination of coefficient of discharge of venturimeter, Determination of coefficient of discharge of orifice meter, Determination of coefficient of friction in pipeline, Determination of coefficient of discharge for rectangular notch, Determination of coefficient of discharge for triangular notch, Determination of coefficient of discharge for trapezoidal notch, Determination of coefficient of discharge, coefficient of velocity and coefficient of contraction for flow through orifice, Determination of coefficient of discharge for mouth piece, Determination of metacentric height, Determination of efficiency of hydraulic ram, Study of current meter, Velocity distribution in open channels and determination of Manning's, coefficient of rugosity.

Teaching Schedule theory with weightages(%)

Lecture No.	Topics	Article No.	Page No.	Book	Weightage, (%)
Unit I		•	•	•	• · · ·
1	Properties of fluids: Introduction, properties of fluid like mass density, specific weight, specific volume, specific gravity, viscosity, types of fluids,	1.1, 1.2.1, 1.2.2., 1.2.3, 1.2.4, 1.3, 1.3.1, 1.3.2, 1.3.3, 1.3.4, 1.3.5	1-8	1	15
2	Compressibility, surface tension, and capillarity	1.5, 1.6,	22- 25	1	
3	Pressure and its measurement: Fluid pressure at point, pascal's law, absolute, gauge, atmospheric and vacuum pressure	2.1, 2.2, 2.4,	32- 33 38- 39	1	
4,5,6,7	Measurement of Pressure: Simple manometers: piezometer, U- tube manometer, single column manometer, Differential manometers: U-tube	2.5, 2.6, 2.7,	39- 48	1	
	differential Manometers, Inverted U-tube differential manometer, Mechanical gauges	2.6	70- 72	2	
Unit II			-	-	
8,9,10	Pressure forces on plane and curved surfaces: Introduction, total pressure and center of				15
	pressure, vertical plane surface submerged in liquid, horizontal plane surface submerged in liquid, inclined plane surface submerged in liquid, curved surface sub-merged in liquid.	3.1, 3.2, 3.3, 3.4, 3.5, 3.6	65- 67 81- 83 90- 92	1	
11,12	Buoyancy and Floatation: Introduction, buoyancy, center of buoyancy, meta-centre, metacentric height, analytical method for metacentric height	4.1, 4.2, 4.3, 4.4, 4.5, 4.6	110- 111 114- 117	1	
13	Conditions of floatation and stability of submerged and floating bodies	4.7	121- 122	1	
Unit III					
14	Kinematics of fluid flow: Introduction, methods of describing fluid motion, types of fluid flow, continuity equation, continuity equation in three- dimensions,	5.1, 5.2, 5.3, 5.4, 5.5, 5.6,	139-14 145-14		20
15	Description of the flow pattern: Path lines, streak lines and stream lines, stream tube (only definitions) Rotational and irrotational flow and	6.4 6.8	245-24		
	circulations and vorticity (only	6.8 6.9	269-20		

	definitions)				
	Velocity potential function and stream	5.8	152-155	1	
	function		102 100	-	
	Velocity potential function, Stream	5.8.1, 5.8.2,			
	function, Equipotential lines, line of	5.8.3, 5.8.4,			
	constant stream function, flow net,	5.8.5, 5.8.6			
	relation between stream function and	5.0.5, 5.0.0			
	velocity potential function (only theory)				
16				1	
10	Dynamics of flow:	6162	222 225	1	
	Introduction, equations of motion,	6.1, 6.2,	233-235		
	Euler's equation of motion.	6.3, 6.5,	239		
	Assumptions, Bernoulli's equation for real fluid,	6.6, 6.7			
17	Venturimeter, practical applications of	6.7.1	241-243,	1	
	Bernoulli's equations	6.7.2	253-255,		
	Orifice meter	6.7.3	257-258,		
	Nozzle (Pitot-tube)		402		
	Siphon	11.6		1	
Unit IV	•			-	•
18,19,20	Flow through notches, weirs:	8.1,	319-320	1	10
,	Introduction, classification of notches	8.2			
	and weirs,				
	Discharge over a rectangular notch or	8.3	320	1	
	weir				
	Discharge over a triangular notch or weir	8.4	321	1	
	Discharge over a trapezoidal notch or	8.6	325-326	1	
	weir	0.0	020 020	-	
	Discharge over a stepped notch	8.7	326	1	
	Advantages of triangular notch or weir	8.5	324-325	1	
	over rectangular notch or weir	0.5	524 525	1	
21	Flow through orifices and				
21	Mouth pieces:				
	Introduction, classifications of orifices,	7.1, 7.2, 7.12	285 &	1	
	Classifications of mouthpiece	1.1, 1.2, 1.12	283 & 306	1	
	L	7.3	285-286	1	
	Flow through an orifice			1	
	Hydraulic coefficients	7.4	286-287		
	Flow through an external cylindrical mouthpieces	7.13	306-307	1	
Unit V					
22, 23	Flow in open channels:				30
	Introduction, classification of flow in channels	16.1, 16.2	664-665	1	
	Discharge through open channel by	16.3, 16.4	666-667	1	
	Chezy's formula and Manning's	16.4.3	672		
	formula, Bazin formula, Ganguillet-	10.7.3	012		
	Kutter's formula,				
	Most economical section of channel	16.5, 16.5.1	675-676	1	
		16.5, 16.5.1	678-680	1	
		,			
	Hadrondi o in mar	16.5.3	688-689	2	
04.25	Hydraulic jump	10.1, 10.2	521-522	3	
24,25	Laminar flow:	10.1	C0 5	2	
	Introduction to laminar flow	13.1	605	2	
	Turbulent flow:				

		10.1 10/		1	
	Introduction, Reynolds experiment	10.1, 10.2	2, 391-394	1	
	Frictional loss in pipe flow	10.3			
	Shear stress in turbulent flow	10.4	395-396	1	
	Velocity distribution in turbulent flow in	10.5	396-397	1	
	pipes				
26,27	General equation of head loss:	11.1	420	1	
	Introduction, loss of energy in pipes	11.2			
	Darcy-Weisbach equation, Chezy's	11.3	420-421	1	
	equation				
	Minor head losses	11.4	425-428	1	
			434-436		
	Hydraulic gradient and energy line	11.5	443-444	1	
28, 29	Flow through network of pipes:				
	Flow through pipes in series	11.7	454-455	1	
	Flow through pipes in parallel pipes	11.9	459	1	
	Flow through branched pipes	11.10	474-475	1	
	Power transmission through pipe, siphon	11.11	480-481	1	
		11.15			
Unit VI					
30, 31	Dimensional analysis and similitude.			1	10
	Introduction, secondary or derived	12.1, 12.2	2, 502-504		
	quantities, dimensional homogeneity	12.3			
	Methods of dimensional analysis:	12.4	504-509	1	
	Rayleigh's method	12.4.1			
	Buckingham's π - theorem	12.4.2			
	Types of similarities (similitude)	12.6	522-523	1	
	Types of forces acting in moving fluid	12.7	523-524	1	
	Dimensionless numbers	12.8	524-525	1	
32	Introduction of fluid machinery:				
	Definition. Only names of fluid	25.1, 25.5	889,	1	
	machinery. Hydraulic ram in details.		901-902		

Practicals:

- 1. Study of manometers.
- 2. Study of pressure gauges.
- 3. Verification of Bernoulli's theorem.
- 4. Determination of coefficient of discharge of venturimeter
- 5. Determination of coefficient of discharge of orifice meter.
- 6. Determination of coefficient of friction in pipeline.
- 7. Determination of coefficient of discharge for rectangular notch
- 8. Determination of coefficient of discharge for triangular notch
- 9. Determination of coefficient of discharge for trapezoidal notch
- 10. Determination of coefficient of discharge, coefficient of velocity and coefficient of contraction for flow through orifice.
- 11. Determination of coefficient of discharge for mouth piece.
- 12. Determination of metacentric height.
- 13. Determination of efficiency of hydraulic ram
- 14. Study of current meter
- 15 -16. Velocity distribution in open channels and determination of Manning's coefficient of rugosity.

Suggested reading

Text books

	At DOORS						
Sr.	Title	Author	publication				
No.							
1	A text book of fluid mechanics and	Dr. R.K. Bansal	Laxmi Publications (P)				
	hydraulic mechanics		Ltd. New Delhi				
	(Eighth edition)						
2	Hydraulics and fluid mechanics	Dr-P.N. Modi &	Standard Book House,				
	(including hydraulic machines)	Dr. S.M. Seth	Delhi-6				
	(Thirteenth edition)						
3	Irrigation Engineering and Hydraulic	S.K.Garg	Khanna Publisher, New				
	Structures		Delhi				

Reference books

Sr. No.	Title	Author	Publication
4	Fluid mechanics	Dr. Jagdish Lal	Metropolitan books CI. Pvt. Ltd. New Delhi

Course No	: PFE 233	Course Title	: Engineering Properties of Agricultural Produce
Semester	: III	Credits	: 2 (1+1)

Syllabus

Theory

Importance of engineering properties of Agricultural Produce and Classification. Physical properties- shape, size, roundness, sphericity, volume, density, porosity, specific gravity, surface area of grains, fruits and vegetables.

Thermal properties, Heat capacity, Specific heat, Thermal conductivity, Thermal diffusivity, Heat of respiration; Co-efficient of thermal expansion, Friction in agricultural materials; Static friction, Kinetic friction, rolling resistance, angle of internal friction, angle of repose.

Aero dynamics properties of agricultural products, drag coefficients, terminal velocity. Rheological properties; force, deformation, stress, strain, elastic, plastic and viscous behaviour, Newtonian and Non-Newtonian liquid, Visco-elasticity, Newtonian and Non-Newtonian fluid, Pseudo-plastic, Dilatant, Thixotropic, Rheopectic and Bingham Plastic Foods. Electrical properties.

Practical

Study of moisture content measuring methods and determination, Determination of the shape and size of grains, fruits and vegetables, Determination of sphericity and roundness of fruits and vegetables, Determination of surface area of food materials, Determination of bulk density and true density of grains, Determination of density of fruits and vegetables, Determination of angle of repose of grains and friction co-efficient of grains, Determination of terminal velocity of grains, Study of thermal conductivity of food materials, Study of specific heat of food materials, Determination of hardness of food material and determination of viscosity of liquid foods, Visit to seed processing plant.

Lect.	Title	Book	Chapter /	Page No	Weighta
No.		No.	Art No.		ge (%)
1	Importance of engineering properties of	1	1.1, 1.2,	1 to 10	10
	Agricultural Produce and Classification.		1.3		
2 - 5	Physical properties- shape, size,	1	3.1 to 3.5	51 to 87	30
	roundness, sphericity, volume, density,				
	porosity, specific gravity, surface area of				
	grains, fruits and vegetables.				
6-7	Thermal properties, Heat capacity,	2	7.2	192 to 196	20
	Specific heat, Thermal conductivity,		7.4, 7.4.1	198 to 199	
	Thermal diffusivity, Heat of respiration;		7.4.1.2	203, 204,	
	Co-efficient of thermal expansion.		(i)(ii)	205	
			7.5	211 to215	
			7.9		
8-9	Friction in agricultural materials; Static	1	10.1	556 to 558	10
	friction, Kinetic friction, rolling		10.2	566 to 569	
	resistance, angle of internal friction, angle		10.3	577 to 578	

Lesson Plan - Theory

Lect.	Title	Book	Chapter /	Page No	Weighta
No.		No.	Art No.		ge (%)
	of repose.		10.4	583 to 584	
				586 to 587	
10	Aero dynamics properties of agricultural	1	9.1	495 to 497	10
	products, drag coefficients, terminal		9.2	499 to 501	
	velocity.				
11-13	Rheological properties; force,	1	4.2	90 to 94	15
	deformation, stress, strain, elastic, plastic		4.3	94 to 100	
	and viscous behaviour.				
14-15	Newtonian and Non-Newtonian liquid,	1	5.1	174,175,18	
	Visco-elasticity, Newtonian and Non-		5.2	0	
	Newtonian fluid, Pseudo-plastic, Dilatant,		5.3	180 to 183	
	Thixotropic, Rheopectic and Bingham			205 to 208	
	Plastic Foods				
16	Electrical properties.	1	1.4	10 to 12	5
		2	9.1	273 to 274	
			9.2.1, 9.2.2	279 to 280	
			9.3	280 to 283	
			9.4	283 to 285	

Practical Exercises

No.	Title
1	Study of moisture content measuring methods and determination
2	Determination of the shape and size of grains, fruits and vegetables
3	Determination of sphericity and roundness of fruits and vegetables
4	Determination of surface area of food materials
5	Determination of 1000 grain weight
6	Determination of bulk/ true volume, specific gravity of food materials
7	Determination of bulk density and true density of grains
8	Determination of density of fruits and vegetables
9	Determination of angle of repose of grains
10	Determination of co-efficient of external/ internal friction of grains
11	Determination of terminal velocity of grains
12	Study of thermal conductivity of food materials
13	Study of specific heat of food materials
14	Determination of hardness of food material Foods
15	Determination of viscosity of liquid
16	Visit to seed processing plant

Suggested readings Text Books

No.	Author	Title & Year	Publisher
1	Mohsenin, N.N.	Physical Properties of Plants &	Gordon & Breach Science
		Animals, 1980	Publishers, New York
2	Singhal OP &	Engineering Properties of	Saroj Prakashan, 644-647, Katra,
	Samuel DVK	Biological Materials, 2011	ALLHABAD – 211 002.

Reference Books

1	Rao, M.A. and	Engineering Properties of	Marcel Dekker Inc. New York
	Rizvi, S.H.	Foods, 1995	

Course No.	:	FS-233	Course Title	:	Theory of Structures
Semester	:	III	Credits	:	2(1+1)
Syllabus					

Theory

Loads and use of BIS Codes.Design of connections.Design of structural steel members in tension, compression and bending.Design of steel roof truss. Analysis and design of singly and doubly reinforced sections, Shear, Bond and Torsion. Design of Flanged Beams, Slabs, Columns, Foundations, Retaining walls and Silos.

Practical

Design and drawing of single reinforced beam, double reinforced beam, Design and drawing of steel roof truss; Design and drawing of one way, two way slabs, Design and drawing of RCC building; Design and drawing of Retaining wall. To measure workability of cement by slump test.

Lect.	Торіс	Book	Article	Page No.	Weightage
No.		No.	No.		%
	Part-1 – Steel Structures			·	·
1	Introduction	1	1.1 to 1.3	1 to 3	20%
	Characteristic strength and	2	1.1 to 1.9,	1 to 23	
	characteristics load, partial safety		1.11 -1.12		
	factors for load & material.				
2-3	Tension members	1	4.1 to 4.4	54 to 71	
4-5	Compression member	1	5.1 to 5.7	77 to 92	20%
6-7	Industrial sheds	1	9.1 to 9.2	201 to 223	
	Part-2 – RCC Structures				
8-9	Analysis and design of singly (LSM)	2	3.1 to 3.6	50 to 66	20%
	reinforced sections.				
10-11	Analysis and design of doubly	2	4.1 to 4.3	71 to 87	
	reinforced sections				
12-13	Design of one way slab	2	10.1 to	233 to266	20%
	Design of two way slab		10.5		
14-15	Design of axially loaded short columns	2	12.1 to	355 to 375	20%
			12.4		
16	Types of footing, design of Isolated	2	13.1 to	419 to 440	
	RCC footing		13.5		

Teaching Schedule

Practical Exercises:

SN	Title
1	To study standard rolled steel sections and use of steel table to find their properties.
2	Drawing of various types of trusses.
3	Design and drawing of industrial truss.
4	Problem on design wind pressure for sloping roof.
5	Design and drawing of tension members
6	Design and drawing of compression members
7	Design and drawing of RCC slab and beam of a farm house.
8	Design and drawing of column and footing of farm house.
9	Drawing of various retaining wall.
10	Design and drawing of silos.

Suggested readings

Year	Title	Publisher
2012	Design of steel structures	TataMcgraw-hill, New Delhi
2008	Illustrated Reinforced Concrete	Structures publications, Pune
	Design	
2003	Principles of Agricultural	Jain Brothers, New Delhi
	Engineering Volume-I	
2012	Limit state theory and design of	Structures publishers, Pune
	reinforced concrete	
2012	Reinforced concrete design (IS	New Age International
	456-2000) Principles and	
	practice	
	Fundametals of reinforced	S. chand and company
	concrete	
2011	Design of steel structure	Tata Mcgraw-hill, New Delhi.
2011	Design of steel structure	TataMcgraw-hill, New Delhi
2010	Design of steel structure	Dhanpatrai and sons
		Publication Company, New
		Delhi
2000	RCC design	Standard book house, New
	-	Delhi
1984	RCC Theory and design	MACMILLAN , Delhi
	2012 2008 2003 2012 2012 2012 2011 2011 2011 2010 2000	2012Design of steel structures2008Illustrated Reinforced Concrete Design2003Principles of Agricultural Engineering Volume-I2012Limit state theory and design of reinforced concrete2012Reinforced concrete design (IS 456-2000) Principles and practice2011Design of steel structure2011Design of steel structure2010RCC design2000RCC design

Course No: AS-EXTN-231

Semester: III

Title: Entrepreneurship Development and Business Communication (Common Course) Credit: 2 (1+1)

Syllabus

Theory

Entrepreneurship, management – Management functions – planning- Organizing -Directing – motivation - ordering - leading - supervision-Communication and control - Capital - Financial management - importance of financial statements - balance sheet - profit and loss statement, Analysis of financial statements - liquidity ratios - leverage ratios, Coverage ratios - turnover ratios – profitability ratios, Agro-based industries – Project – project cycle – Project appraisal and evaluation techniques - undiscounted measures - payback period - proceeds per rupee of outlay, Discounted measures - Net Present Value (NPV) - Benefit-Cost Ratio (BCR) - Internal Rate of Return (IRR) - Net benefit investment ratio (N / K ratio) - sensitivity analysis-Importance of agribusiness in Indian economy International trade-WTO agreements - Provisions related to agreements in agricultural and food commodities. Agreements on agriculture (AOA) - Domestic supply, market access, export subsidies agreements on sanitary and phyto-sanitary (SPS) measures, Trade related intellectual property rights (TRIPS). Development (ED): Concept of entrepreneur and entrepreneurship Assessing overall business environment in Indian economy- Entrepreneurial and managerial characteristics- Entrepreneurship development Programmes (EDP)- Generation incubation and commercialization of ideas and innovations- Motivation and entrepreneurship development- Globalization and the emerging business entrepreneurial environment- Managing an enterprise: Importance of planning, budgeting, monitoring evaluation and follow-up managing competition. Role of ED in economic development of a country- Overview of Indian social, political systems and their implications for decision making by individual entrepreneurs-Economic system and its implications for decision making by individual entrepreneurs- Social responsibility of business. Morals and ethics in enterprise management- SWOT analysis-Government schemes and incentives for promotion of entrepreneurship. Government policy on small and medium enterprises (SMEs)/SSIs/MSME sectors- Venture capital (VC), contract farming (CF) and joint ventures (JV), public-private partnerships (PPP)- Overview of agricultural engineering industry, characteristics of Indian farm machinery industry

Practical

Preparation of business – Strengths Weaknesses Opportunities and Threats (SWOT) analysis, Analysis of financial statements (Balance Sheet, Profit loss statement). Compounding and discounting, Break-even analysis Visit to agro-based industries – I, Visit to agro-based industries – II Study of Agro-industries Development Corporation, Ratio analysis – I, Ratio analysis – II, Application of project appraisal technique – I(Undiscounted measures), Application of project appraisal technique – II(Discounted Measures), Formulation of project feasibility reports – Farm Machinery Project proposals as entrepreneur – individual and group - Presentation of project proposals in the class

Teaching Schedule Theory with weightages (%)

Lecture	Particulars	Weightages (%)
No	Enternance making Magning and Definition Expertions of Management	0.5
1& 2	Entrepreneurship- Meaning and Definition, Functions of Management-	9.5
	Planning-Organizing-Directing-Motivation-Ordering-Leading-	
3&4	Supervision-Communication and control. Capital- Financial Management, Importance of financial statement,	11.5
3&4	balance sheets, profit and loss statements.	11.3
	Analysis of financial statements- leverage ratios- Coverage ratios –	
	turnover ratios – profitability ratios of Agro based industries.	
5	Project – Meaning and Definition, project cycle Project appraisal and	04
5	evaluation techniques,	Ŭ I
6&7	Undiscounted measures, payback period, proceeds per rupee of outlay	12.5
	Discounted measures, Net Present Value (NPV), Benefit-Cost Ratio	
	(BCR), Internal Rate of Return (IRR), Net benefit investment ratio (N /	
	K ratio) and sensitivity analysis.	
8	Importance and Scope of agribusiness in Indian economy	06
9	International Trade, WTO agreements, Provisions related to agreements	12.5
	in agricultural and food commodities. Agreements on agriculture	
	(AOA),	
10	Domestic supply, market access, export subsidies agreements on	06
	sanitary and phyto-sanitary (SPS) measures, Trade related intellectual	
	property rights (TRIPS).	
11	Development (ED): Concept of entrepreneur and entrepreneurship	06
	Assessing overall business environment in Indian economy	
12	Entrepreneurial and managerial characteristics- Entrepreneurship	6.5
	development Programmes (EDP)- Generation incubation and	
	commercialization of ideas and innovations- Motivation and	
10	entrepreneurship development.	06
13	Globalization and the emerging business entrepreneurial environment	06
	and importance of planning, budgeting, monitoring evaluation and	
	follow-up managing competition.	
	Role of ED in economic development of a country and overview of Indian social, political systems and their implications for decision	
	making by individual entrepreneurs	
14	Morals and ethics in enterprise management- SWOT analysis-	12.5
17	Government schemes and incentives for promotion of entrepreneurship	12.5
15&16	Government policy on small and medium enterprises	07
1	(SMEs)/SSIs/MSME sectors- Venture capital (VC), contract farming	07
	(CF) and joint ventures (JV), public-private partnerships (PPP)-	
	Overview of agricultural engineering industry, characteristics of Indian	
	farm machinery industry	
	Total	100

Practical Exercises

Ex. No.	Topics
1.	Preparation of business – Strengths Weaknesses Opportunities and Threats (SWOT)
	analysis,
2.	Analysis of financial statements (Balance Sheet, Profit loss statement).
3.	Compounding and discounting and Break Even Analysis
4.	Visit to agro-based industries – I

5.	Visit to agro-based industries – II
6.	Time audit through planning
7.	Study of Agro-industries Development Corporation
8.	Ratio analysis – I
9.	Ratio analysis – II
10.	Application of project appraisal technique – I(Undiscounted measures)
11.	Application of project appraisal technique – I(Discounted measures)
12.	Formulation of project feasibility reports
13.	Farm Machinery Project proposals as entrepreneur – individual
14.	Farm Machinery Project proposals as entrepreneur group
15.	Visit to entrepreneurship development institute / Visit to District Small Scale Industry
	Development Corporation office
16.	Visit to entrepreneurs /case study of successful entrepreneurs (project report)

Suggested Reading

Text Books

- 1. Gittenger Price, J. 1989. Economic Analysis of Agricultural Projects. John Hopkins University, Press, London.
- 2. Thomas W Zimmer and Norman M Scarborough. 1996. Entrepreneurship. Prentice-Hall New Jersey.
- 3. Mark J Dollinger. 1999. Entrepreneurship Strategies and Resources. Prentice-Hall, Upper
- 4. Saddal Rover, New Jersey.
- 5. Khanka S S. 1999. Entrepreneurial Development. S. Chand and Co. New Delhi.
- 6. Mohanty S K. 2007. Fundamentals of Entrepreneurship. Prentice Hall India Ltd., New Delhi.
- 7. A.K.Singh, 2009. Entrepreneurship Development and Management. Lakshmi Publications Ltd.,
- 8. Vasanta Desai. 2000. Dynamics of Entrepreneurial Development and Management. Himalaya Publishing House, New Delhi.
- 9. Khanka S S. 1999. Entrepreneurial Development. S. Chand and Co. New Delhi.

Reference Books

- 1. Harsh, S.B., Conner, U.J. and Schwab, G.D. 1981. Management of the Farm Business Prentice Hall Inc., New Jersey.
- 2. Joseph, L. Massie. 1995. Essentials of Management. Prentice Hall of India Pvt. Ltd., New Delhi.
- 3. Omri Rawlins, N. 1980. Introduction to Agribusiness. Prentice Hall Inc., New Jersey
- 4. K.K. Dewett and Adarsh Chand. Modern Economic Theory-Micro and Macro Analysis. Shamilal Charitable Trust, New Delhi-55.
- SmitaDiwase, Agri. Business Management, Everest Publishing House, Pune 30 S.C. Jain. Management of Agricultural Finance

SEMESTER: IV

Course No: BS-PHY-242 Semester: IV (New)

Title: Applied Electronics & Instrumentation **Credits:** 2 (1+1)

UNIT	Topics to be covered	Book No.	Chapter No.	Weight age
Ι	Semiconductor Physics PN Junction, V-I characteristics of PN junction, Breakdown voltage, Knee voltage, Peak inverse voltage.	1	5	25%
	Semiconductor Diode: Semiconductor Diode, Rectifiers, Efficiency of HWR, Full wave rectifier & it's types, Ripple Factor, Filter circuits, Types of filter circuits. Clipper and clamper.	1	6	
П	Transistors : Transistor, Transistor action, Symbols, Transistor connections: Common Base, Common Emitter, Common Collector connection, Transistor as an amplifier in CE mode, Faithful amplification. Transistor biasing, stabilization.	1	8,9, 11,12	25%
	Transistor amplifier Single stage transistor amplifier, Practical circuit of transistor amplifier, Multistage transistor amplifier & it's important terms.	1	13, 14,15	
III	Operational Amplifiers Operational amplifier, Schematic symbol of op- amp, Electrical parameters of Op-Amp, Ideal Op-Amp Characteristics, Inverting and, non- inverting amplifier, Equivalent circuit of Op- Amp.	1	25	25%
	Digital Electronics Decimal to Binary Conversion, Binary to Decimal Conversion, Logic gates (AND, OR, NOT, NAND, NOR), NAND gate as universal gate, Boolean Algebra, Boolean Theorems.	1	26	
IV	Instrumentation Measurement and it's aim, Functional element of instrument, performance characteristics, static characteristics (Calibration, Accuracy, Precision, Repeatability, Reproducibility, Resolution, hysteresis, Sensitivity, dead zone, backlash, true value), static error, sources of error ,dynamic characteristics (speed of response, fidelity, lag, dynamic error) Measurement of displacement (LVDT, LDR, Capacitive and Inductive pick up), Temperature (Thermocouple, Thermistor, RTD).	2	1,7	25%

Practical Exercise:

- 1) To study V-I characteristics of PN junction diode
- 2) To study Half wave rectifier
- 3) Study of Centre tap Full wave and Bridge rectifier
- 4) To study transistor characteristics in CE configuration
- 5) To study Diode as Clipper
- 6) Study of working of diode as clamper
- 7) To Study frequency response of Single stage transistor amplifier
- 8) To study Op-Amp IC741 as Inverting amplifier
- 9) Study of Op-Amp as Non inverting amplifier
- 10) To study the function and implementation of logic gates i.e. AND, OR, NOT, NAND,NOR, EX-OR gates
- 11) Study of LVDT/ LDR.
- 12) Study of Thermocouple
- 13) Study of RTD
- 14) Study of Thermistor
- 15) Study of Capacitive pick up
- 16) Study of Inductive pick up.

Suggested readings

Text Books:

- 1) Principles of Electronics (11th edition) V.K. Mehta, Rohit Mehta, S.Chand Co. New Delhi.
- 2) Industrial instrumentation and control (Third edition) -by S.K.Singh, Tata Mc-Graw Hill Pub.

Reference Books:

- 1) Op-Amps and Linear Integrated Circuits Ramakant A. Gayakwad, PHI Pvt.Ltd. New Delhi, 4th Edition.
- Linear Integrated Circuits D.Roy Choudhary, Shail B. jain, New age Internatioal pub., 2nd Edition.
- 3) Electronic Instrumentation S.K. Khedkar, Pune VidyarthiGriha Pub. 3rd Edition.
- 4) Electronic fundamentals and applications- John D. Ryder, PHI Pvt.Ltd. New Delhi
- 5) Electronic Devices and circuits Sanjeev Gupta, Sontosh Gupta, DhanpatRai Pub.
- 6) Digital Principles and applications Albert Malvino, Donald leach
- 7) Measurement of electronics and electronics Instrumentation Sawhney A.K. Dhanpat Rai Pub. New Delhi.
- 8) Modern Digital Electronics R.P.Jain, Tata Mc-Graw Hill Pub., IVth Edition

Course No: FMPE-246

Title: Tractor Systems and Controls

Sem: IV

Credit: 2 (1+1)

Theory:

Classification of tractors. Study of transmission systems, clutch- need, gear box, differential and final drive mechanism Familiarization of brake mechanism. Steering system, types, steering gear box, Ackerman and hydraulic steering and hydraulic systems. Tractor power outlets: P.T.O., belt pulley, drawbar, etc. Tractor chassis mechanics and design for tractor stability. Introduction to tractor testing Ergonomic considerations and operational safety.

Practical: Introduction to transmission systems and components; Study of clutch functioning, parts, Study of different types of gear box, calculation of speed ratios, design problems on gear box; Study on differential and final drive and planetary gears; Study of brake systems and some design problems; Steering systems, types, steering gear box, principles of operations, Steering geometry and adjustments; Study of hydraulic systems in a tractor, hydraulic trailer; Traction performance of a tractor wheel; Finding C.G. of a tractor by weighing technique; Finding CG of a tractor using suspension/balancing techniques; Finding moment of Inertia of a tractor; Ergonomic considerations and operational safety.

Lesson Plan

Sr.	Lecture	Торіс	Art. No./Page
No.	No.		
1.	1 - 2	Classification of tractors. Study of transmission system-Clutch: Function, principle of operation, clutch system, working of single	J-11.1 to 11.7
		plate system, detail of components, working of dual clutch plate & clutch adjustment	S-141to 143
		Types of clutch system, multiple plate clutch, cone clutch, dog clutch, fluid coupling	
2.	3	Gear Box : Introduction, principle of gearing, types of gar box.	J-12.1 to 12.3
3.	4	Differential : Need, function, principle of operation, operational details and differential lock, Final Drive	J-13.1 to 13.4, 13.6
4.	5-6	Brake : General classification of brake, mechanical, hydraulic brake	J-15.1 to 15.3.2
5.	7-8	Steering systems- requirement, qualities of steering system, types, main parts of steering system, types of steering boxes, steering geometry, Toe in, Ackerman steering, Toe out on turns, Toe out negative camber, king pin inclination, spindle bearing load, caster angle.	N- 27-33
		Types: Single drop, double drop, Power Steering	J-173, J-14.1.5
6.	9-11	Hydraulic system of tractor, principle, main components, functions, working, implement control-draft and position	J-17.1 to 17.5
7.	12	Tractor power outlet- P.T.O., Tractor pulley, drawbar	O-4.6-4.7, 4.8
		Tyres, tubes, construction, specification and wheel ballasting	J- 16.1- 16.7
8.	13-14	Introduction to traction, terminologies, forces acting on pneumatic tyre	S-169- 173
		Tractor chassis mechanism, stability, weight transfer methods CG determination	B-307-315
10	15	Introduction to tractor testing	J-21.1-21.7
11.	16	Ergonomic and safety in tractor design.	SM-12.1, 12.2,
		Spatial, visual and control requirement of the tractor operator	12.4, 12.5

Teaching schedule- Theory with weightages (%)

Unit No.	Торіс	Weightage, %
I	Classification of tractors. Study of transmission system-Clutch: Function, principle of operation, clutch system, working of single plate system, detail of components, working of dual clutch plate & clutch adjustment Types of clutch system, multiple plate clutch, cone clutch, dog clutch, fluid coupling	30
	Gear Box : Introduction, principle of gearing, types of gear box.	
	Differential : Need, function, principle of operation, operational details and differential lock, Final Drive	
II	Brake : General classification of brake, mechanical, hydraulic brake	35
	Steering systems- requirement, qualities of steering system, types, main parts of steering system, types of steering boxes, steering geometry, Toe in, Ackerman steering, Toe out on turns, Toe out negative camber, king pin inclination, spindle bearing load, caster angle.	
	Types: Single drop, double drop, Power Steering	
	Hydraulic system of tractor, principle, main components, functions, working, implement control-draft and position	
III	Tractor power outlet- P.T.O., Tractor pulley, drawbar Introduction to tractor testing	10
IV	Introduction to traction, terminologies, forces acting on wheel. Tyres, tubes, construction, specification and wheel ballasting. Tractor chassis mechanism, stability, weight transfer methods CG determination Ergonomic and safety in tractor design. Spatial, visual and control requirement of the tractor operator	25

List of Practicals :

1	Introduction to transmission system and components.
2 - 3	Study of clutch system
4 -5	Study of different types of gear box
6 -7	Study of brake system
8-9	Study of differential and final drive system.
10-11	Study of steering system, geometry and adjustments.
12-13	Study hydraulic system in tractor.
14	Introduction to tractor tyre and ballasting.
15	Appraisal of various controls of tractor in relation to anthropometric
	measurement.
16	Visit to Tractor repair workshop and spare part agencies.

Text Book :

- 1 Farm Tractor Maintenance and Repair by SC Jain & CR. Rai (J) 2ndEd 1999.
- 2 Elements of Agril. Engineering by Dr. Jagdiswar Sahay (S) Third edition 1992.
- 3 Farm Machines & Equipment by CP Nakra, Dhankpat Rai & Sons (N) Edition 1990.
- Principles of Agricultural engineering, Vol-I by T.P.Ojha and, A.M. Michael, Sixth Ed, Jain Brothers, 2012 (O)
- 4 Tractor and their power unit by E.L. Barger et. al. (B) (4 authors book 1st Edition, 1951).
- 5 Tractor and their power unit by Liljedhal J.B. et. al. (L) (4 authors book 4th Edition, 2004).
- 6 Design of Agricultural Tractors, by D.N. Sharma and S. Mukesh. (SM) Jain Brothers, 2010.

Course No: FMPE-247 Sem: IV

Syllabus

Theory:

Meaning of design, Phases of design, design considerations, mechanical properties. Types of loads and stresses, theories of failure, factor of safety, selection of allowable stress. Stress concentration. Elementary fatigue and creep aspects. Cotter joints, knuckle joint, turnbuckle. Design of welded joints subjected to static loads. Design of shafts under torsion, bending and combined bending and torsion. Design of keys. Design of muff, sleeve, and rigid flange couplings. Design of helical and leaf springs. Belt: Introduction, selection of belt, types of belt drive, types of belt, material used for belt, types of flat belt drive. Design of flat belt and V-belt drives. Chain drive: Chain drives, Advantages and disadvantages over belt drive, terms used in chain drives, relation between pitch and pitch circle diameter, classification of chains, hoisting chain, conveyor chain, power transmitting chain. (related problems). Selection of anti-friction bearings.

Lec. No.	Topic to be covered	Book. No.	Art. No.	Page No.
1	Meaning of design, Phases of design, design considerations, mechanical properties.	1	1.1-1.4, 2.1-2.5	1-3 16-20
2	Types of loads and stresses, theories of failure, factor of safety	1	4.1-4.14	87-102
3-4	Cotter joints and knuckle joint	1	12.1-12.4 12.12-12.15	431-439 455-462
5-6	Design of welded joints subjected to static loads	1	10.1 to 10. 11, 10.16-10.17, 10.19	341-345, 349-350, 353
7-8	Design of shafts under torsion, bending and combined bending and torsion.	1	14.1 to 14.11	509-517
9-10	Design of helical spring	1	23.1 to 23.9	819-831
11	Design of keys.	1	13.1-13.10	470-478
12-13	Design of muff, and flange couplings	1	13.11-13.17	478-498
14	Design of levers	1	15.1 to 15.5	558-568
15-16	Belt drives and Chain drive	1	11.1-11.6 11.29 -11.32, 11.35 - 11.38	325-330 369-371 373-375
	Design of flat belt and V-belt drives		18.1to 18.4 18.6 to 18.9 18.13-18.14, 18.18 20.1, 20.4-20.5	677-679 680 686-687 692-693 727-728 730-731

Lesson Plan

Lesson Plan with weightages

Unit	Topic to be covered	Weightage,
No.		%
1	Meaning of design, Phases of design, design	10
	considerations, mechanical properties.	
	Types of loads and stresses, theories of failure, factor of	
	safety	
II	Cotter joints and knuckle joint	20
	Design of welded joints subjected to static loads	
III	Design of shafts under torsion, bending and combined	30
	bending and torsion.	
	Design of keys.	
	Design of muff, and flange couplings	
IV	Design of helical spring	20
	Design of levers	
V	Belt drives and Chain drive	20
	Design of flat belt and V-belt drives	

Note: The theory paper is to be set on the basis of 60 % theory and 40 % numeric (problems)

Practical:

Numerical Problems based on above topics

Suggested readings

Text Books

- 1) Khurmi R S and Gupta J K. 2014. A Text Book of Machine Design. S. Chand & Company Ltd., New Delhi.
- 2) Jain R K. 2013. Machine Design. Khanna Publishers, 2-B Nath Market, NaiSarak, New Delhi.
- 3) Element of workshop technology vol.1 by S.K. Hajara Chaudhary and A.K. HajaraChaudhari

Course No.: SWCE-244

Course Title: Soil and Water Conservation Engineering Credits: 3(2+1)

Svllabus

Semester: IV

Theory

Soil erosion - Introduction, causes and types - geological and accelerated erosion, agents, factors affecting and effects of erosion.Water erosion - Mechanics and forms - splash, sheet, rill, gully, ravine and stream bank erosion. Gullies - Classification, stages of development. Soil loss estimation – Universal soil loss equation (USLE) and modified USLE. Rainfall erosivity - estimation by KE>25 and EI₃₀methods.Soilerodibility - topography, crop management and conservation practice factors.Measurement of soil erosion - Runoff plots, soil samplers. Water erosion control measures - agronomical measures - contour farming, strip cropping, conservation tillage and mulching. Engineering measures– <u>Bunds and terraces</u>.Bunds - contour and graded bunds - design and surplussing arrangements, <u>compartmental bunding</u>. Terraces - level and graded broad base terraces, bench terraces - planning, design and layout procedure, contour stonewall and trenching(<u>CCT, SCT, & deep CCT</u>). Gully and ravine reclamation - principles of gully control - vegetative measures, temporary structures and diversion drains. Grassed waterways and design. Wind erosion- Factors affecting, mechanics, soil loss estimation and control measures - vegetative, mechanical measures, wind breaks and shelter belts and stabilization of sand dunes. Land capability classification. Rate of sedimentation, silt monitoring and storage loss in tanks.

Teaching Schedule – Theory with weightages (%)

Lectur e No	Торіс	Boo k	Article No./	Weighta ge (%)	
<u>No.</u> 1	Soil erosion, problems caused by erosion	<u>No.</u> 4	Page No. 1.1,1.2		
2	Soil erosion types: geological and accelerated erosion, agents of erosion.	4	3.2, 3.2.1, 3.2.2		
3,4	Water erosion, Factors affecting water erosion, classification of water erosion, mechanics of water erosion	4	3.3, 3.4	25	
5	Gullies- classification of gullies, stages of gully development.	4	4.1, 4.2		
6,7,8	Universal Soil Loss Equation (USLE), determination	3	7.3, 7.4		
	of USLE parameters, Modified USLE, numerical	4	19.2(P.66		
			7-668)		
9	Measurement of soil erosion, runoff plots, soil samplers	6	16.8		
10	Land capability classification	5	14.1		
10	Water erosion control measures-agronomic measures,	1	5.10, 5.11,		
	contour farming, strip cropping, conservation tillage, mulching	-	5.12	30	
12, 13	Engineering measures-contour bund, design criteria,	5	P.712-716		
	numerical, surplussing arrangement	6	18.12,		
			18.13		
14, 15	Engineering measures-graded bund, design criteria, numerical, compartmental bunding	5	14.11		
16	Terraces- level and graded broad base terraces	5	P. 685-		
			688		
17	Bench terraces-planning, design and layout procedure	5	14.12	20	
18,19	Contour stone wall and trenching(CCT, SCT, & deep CCT)	6	P.453-454 P. 440-		
			442		
20, 21	Gully and ravine reclamation-Principles of gully	5	P. 738-		
_~, _1	control, vegetative measures	-	750		
22, 23	Temporary structures and diversion drain.	5	15.9		
<i>,</i>		6	475-477		
24, 25	Grassed waterways and design, numerical	5	P723-726		
26, 27	Wind erosion- Factors affecting, mechanics, soil loss	6	20.1,20.2,	25	
20.20	estimation		20.3	25	
28, 29,	Wind erosion- control measures - vegetative,	6	20.4, 20.5,		
30	mechanical measures, wind breaks and shelter belts	5	20.6, 20.7		
21.20	and stabilization of sand dunes.	5 4	13.8, 13.9		
31,32	Rate of sedimentation, silt monitoring and storage loss in tanks.	4	21.14, 22.5		

Practical Exercises

Exercise No.	Title
1.	Computation of rainfall erosivity index.
2	Computation of soil erodibility index
3	Determination of length of slope (LS) and cropping practice (CP) factors for soil loss estimation.
4-5	Study of soil loss estimation and measuring techniques.
6	Study of rainfall simulator for erosion assessment.
7	Study of Coshocton wheel sampler and multi-slot devisor.
8	Study of determination of sediment concentration through oven dry method.
9	Design of contour bunds.
10	Design of graded bunds.
11	Design of broad base terraces.
12	Design of bench terraces.
13	Design of vegetative waterways.
14	Study of shelterbelts and wind breaks for wind erosion control.
15-16	Visit to watershed project.

Suggested readings

Text Books:

- 1. Frevert, R.K., G.O. Schwab, T.W. Edminster and K.K. Barnes. 2009. Soil and Water Conservation Engineering, 4th Edition, John Wiley and Sons, New York.
- 2. Norman Hudson. 1985. Soil Conservation. Cornell University Press, Ithaka, New York, USA.
- Singh Gurmel, C. Venkataraman, G. Sastry and B.P. Joshi. 1996. Manual of Soil and Water 3. Conservation Practices. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi.
- 4. Suresh, R. 2014. Soil and Water Conservation Engineering.Standard Publisher Distributors, New Delhi.
- 5. Michael, A.M. and T.P. Ojha. 2003. Principles of Agricultural Engineering. Volume II. 4th Edition, Jain Brothers, New Delhi.
- 6. Murthy, V.V.N. 2002. Land and Water Management Engineering. 4th Edition, Kalyani Publishers, New Delhi.

Reference Books:

- 1. Mahnot, S.C. 2014. Soil and Water Conservation and Watershed Management. International Books and Periodicals Supply Service, New Delhi.
- 2. Mal, B.C. 2014. Introduction to Soil and /Water Conservation Engineering. 2014. Kalyani Publishers.

Course No.	:	IDE- 242	Course Title	:	Irrigation Engineering
Semester	:	IV	Credits	:	3 (2+1)

Syllabus:

Theory:

Major and medium irrigation schemes of India, purpose of irrigation, environmental impact of irrigation projects, source of irrigation water, present status of development and utilization of different water resources of the country; measurement of irrigation water: weir, flumes and orifices and other methods; open channel water conveyance system : design and lining of irrigation field channels, on farm structures for water conveyance, control & distribution; underground pipe conveyance system: components and design; land grading: criteria for land levelling, land levelling design methods, estimation of earth work; soil water plant relationship: soil properties influencing irrigation management, soil water movement, infiltration, soil water potential, soil moisture characteristics, soil moisture constants, measurement of soil moisture, moisture stress and plant response; water requirement of crops: concept of evapotranspiration (ET), measurement and estimation of ET, water and irrigation requirement of crops, depth of irrigation, frequency of irrigation, irrigation- adaptability, specification and design considerations.

Practical:

Measurement of soil moisture by gravimetric method, Measurement of soil moisture by tensiometer, gypsum block, Determination of bulk density, Measurement of irrigation water using weir, notch, orifices, Measurement of irrigation water using flumes and siphon tubes, Measurement of infiltration using double ring infiltrometer, Determination of field capacity, wilting point using pressure plate apparatus, Determination of field capacity, wilting point using pressure field method, Estimation of evapotranspiration based on climatological data by Penman-Monteith, Hargreaves-Samani and pan evaporation, Design of irrigation open channel, Design of underground pipeline system, Estimation of irrigation efficiencies, Study of advance, recession and computation of opportunity time, Evaluation of border Irrigation method, Evaluation of furrow irrigation method, Evaluation of check basin irrigation method.

Teaching Schedule:

	~	1		Book	(%)
1	a				
	Sources of irrigation water Surface water sources		21-44	1	25
	Ground water resources		15-16	2	
	Present status of development			Recent notes	
	and			to be	
	utilization of different water			circulated	
	resources				
	of the country				
	Major and medium irrigation			(Recent	
	schemes of India			notes to be	
				circulated)	
	Purpose of irrigation,		FAO	(Recent	
	environmental impact of		publication	notes to be	
	irrigation projects	Charte	200.210	circulated)	
	Measurement of irrigation water: flumes and orifices and other methods	Chapter 5	290-310	1	
	Open channel Water conveyance system, Design and lining of irrigation field channels, On farm structures for water conveyance, control & distribution	Chapter 5	311-347	1	
11,12	Underground pipe conveyance	Chapter	351-355,	1	
	system: components and design	7	361-370		
	Land grading:	Chapter		1	
	Criteria for land leveling	8	382-384		
	Land leveling design methods		387-389		
	(plane method) Estimation of earthwork		398-401		
	quantities		396-401		
Unit II	quantities				
	Soil plant water relationship:	Chapter	421-429	1	35
	Soil properties influencing	9	.==/	- -	
	irrigation such as soil texture,	-	444-445		
	soil Structure, bulk density,				
	capillary and non capillary				
	pores, soil consistency,				
	Volume and mass relationships				
	of soil				
	constituents, kinds of soil water				
- , -	Infiltration:		115 150	1	
	Soil water potential, soil moisture characteristics	Chapter	445-450	1	
	Movement of water into soils:	9			
	Infiltration, factors affecting				
	infiltration				
	rate, measurement of infiltration,				

	Infiltration equation y=at + b				
21,22	Soil moisture constants:		454-459	1	-
21,22	Saturation capacity, field	Chapter	434-437	1	
	capacity,	9			
	moisture equivalent, permanent)	469-470		
	wilting		407-470		
	percentage, available water.				
	Soil moisture stress and plant				
	response				
23	Water requirements of crops:				-
25	Concept of evapotranspiration	Chapter	478-485	1	
	(ET)	9	470 405	1	
	Water and irrigation)			
	requirements of crops				
24	Measurement of				-
24	evapotranspiration	Chapter	488-490	1	
	Lysimeter experiment, field	10	+00-470	1	
	experimental	10			
	plots, soil moisture depletion				
	studies,				
	Water balance method.				
	Water Salaree method.				
Unit III	1				
25	Estimation of evapotranspiration	Chapter	490-494	1	20
	from climatological data:	10			
	Balaney-Criddle method				
	Thornthwaite formula				
	Selection of crop coefficient for				
	Estimating ET (crop)				
	Penman-Monteith (FAO 56)			Notes to be	
	Jeansen-Haise,			circulated	
	Hargreaves-Samani				
26	Depth of irrigation:	Chapter	518-520	1	
	Net irrigation requirement	10			
	Gross irrigation requirement				
27	Irrigation frequency	Chapter	518-520	1	
	Irrigation period	10			
28	Irrigation efficiencies	Chapter	523-527	1	
		10			
Unit IV					
29	Surface irrigation methods:	Chapter	554-555	1	20
•	Introduction and classification	11			-
30	Border Irrigation:	Chapter	555-564	1	
	Introduction, types, adaptability,	11			
	specification				
	Hydraulic of border irrigation,				
	Design of				
	Border irrigation				-
31	Check basin irrigation:	Chapter	564-567	1	
	Introduction, types,	11			
	specifications,				
	Hydraulic of check basin				
	irrigation				

	Design of check basin irrigation				
32	Furrow irrigation:	Chapter	668-673	1	
	Introduction, types,	11			
	specifications,				
	Hydraulic of furrow irrigation,				
	Design of				
	Furrow irrigation, contour				
	irrigation				

Practicals:

- 1) Measurement of soil moisture by gravimetric method.
- 2) Measurement of soil moisture by tensiometer, gypsum block.
- 3) Determination of bulk density.
- 4) Measurement of irrigation water using weir, notch, orifices.
- 5) Measurement of irrigation water using flumes and siphon tubes.
- 6) Measurement of infiltration using double ring infiltrometer.
- 7) Determination of field capacity, wilting point using pressure plate apparatus.
- 8) Determination of field capacity, wilting point using pressure field method.
- 9) Estimation of evapotranspiration based on climatological data by Penman- Monteith, Hargreaves-Samani and pan evaporation.
- 10) Design of irrigation open channel.
- 11) Design of underground pipeline system.
- 12) Estimation of irrigation efficiencies.
- 13) Study of advance, recession and computation of opportunity time.
- 14) Evaluation of border Irrigation method.
- 15) Evaluation of furrow irrigation method.
- 16) Evaluation of check basin irrigation method.

Suggested readings

Text books

Sr. No.	Title	Author	Publication
1	Irrigation theory and practice	A.M. Michael	Vikas publishing house Pvt. Ltd. New Delhi 2 nd Edition
2	Irrigation Water Management Principles and Practice	Dilip Kumar Majumdar	PLrentice-Hall of India Pvt. Limited. New Delhi

Reference books

Sr. No.	Title	Author	Publication
3	Land and Water Management	V.V.N. Murthy	Kalyani publishers, New
	Engineering		Delhi
4	Irrigation Principles and Practice	Israelsen and Hunson	
5	Crop evapotraspiration	Pereira, D. Raes, M.	FAO, Rome
	(Guidelines for computing crop	Smith	
	water requirements) FAO-56		
6	Design and Operation of Irrigation	Ed. M.E. Jenson	ASCE
	System		

Course No :	PFE 244	Course Title	: Post Harvest Engineering of Cereals, Pulses and Oil seeds
Credits:	3 (2+1)	Semester :	

Syllabus

Theory

Introduction, Unit operations of grain processing. Cleaning and grading, aspiration, scalping. Screens and sieves-Types, classification, Ari screen cleaner- and capacity, effectiveness of screens. Various types of separators- specific gravity, magnetic, disc, spiral, pneumatic, inclined draper, velvet roll, colour sorters, cyclone.

Size reduction: principle, Bond's law, Kick's law, Rittinger's law, procedure (crushing, impact, cutting and shearing), Size reduction machinery: Jaw crusher, Hammer mill, Plate mill, Ball mill. Sieve analysis and particle size.

Drying: moisture content; Free, bound and equilibrium moisture content, isotherm, hysteresis effect, EMC determination. Psychrometric chart and its use in drying.

Drying principles and theory, Thin layer and deep bed drying analysis, Falling rate and constant rate drying periods, maximum and decreasing drying rate period. Drying equations, Mass and energy balance. Methods of drying, types of grain dryers.

Milling of paddy, Type of rice milling machinery. Modern rice milling – unit operations and machines. Parboiling of paddy – importance and methods. milling of maize- methods and processed products, milling of wheat operations and machineries. Processing of sorghum and millets. Milling of pulses-Unit operation, methods and machines.

Processing of oilseeds- Unit operations. Mechanical expression and solvent extraction methods.

Mixing: Theory of mixing of solids and pastes, Mixing index, types of mixers for solids, liquid foods and pastes.

Material handling equipment. Types of conveyors: Belt, roller, chain and screw. Pneumatic conveying. Bucket Elevator. Cranes & hoists. Trucks (refrigerated/ unrefrigerated),

Practical

Performance evaluation of different types of cleaners and separators, Determination of separation efficiency, Study of different size reduction machines and performance evaluation, Determination of fineness modulus and uniformity index, Study of different types of conveying and elevating equipments, Study of different types of mixers. Measurement of moisture content: dry basis and wet basis, Study on drying characteristics of grains and determination of drying constant, Determination of EMC (Static and dynamic method), Study of various types of dryers, Study of different equipments in pulse mills and their performance evaluation, Visit to grain processing industries.

Lect.	Title	Book	Chapter /	Page No	Weighta
No.		No.	Art No.		ge (%)
1	Introduction and unit of operation of grain processing	1	Ch1	1-3	
2	Cleaning and grading, screening aspiration, scalping;	1	Ch 2	66-69	

Lesson Plan - Theory

Lect. No.	Title	Book No.	Chapter / Art No.	Page No	Weighta ge (%)
3	Screen opening capacity and effectiveness of screens. Air screen cleaner.	1	Ch 2	71-81	20
4 -5	Various types of separators: specific gravity, magnetic, disc, spiral, pneumatic, inclined draper, velvet roll, colour sorters, cyclone.	1	Ch 2	87-100	
6	Principles of size reduction, crushing efficiency, energy requirements, Rittingers and Kick,s Laws, Bonds law.	1	Ch 5	227-233	
7	Size reduction procedure, machinery: Jaw 1 Ch 5 235-241 crusher, Hammer mill, Plate mill, Ball mill.		235-241	20	
8	Sieve analysis and particle size fineness modulus,	1	Ch 2	221-225	
9-10	Drying: moisture content, Free, bound and equilibrium moisture content, isotherm, hysteresis effect, EMC determination	2	Ch 3	25-33	
11- 12	Psychrometric chart and its use in drying.	2	Ch 2	11-22	
13	Drying principles and theory, Thin layer and deep bed drying analysis, Falling rate and constant rate drying periods, maximum and decreasing drying rate period.	2	Ch 3	25, 34-36	
14	Drying equations, Mass and energy balance.	2	Ch 3	36-40,48-53	20
15- 16	Methods of drying, Different types of grain dryers: bin, flat bed, LSU, columnar, RPEC, fluidized, rotary and tray.	2	Ch 4 Ch 5	66-68 80-91	
17	Milling of paddy, Type of rice milling machinery. Modern rice milling – unit operations and machines.	1	Ch 5	249-251; 257-269 256	
18	Parboiling of paddy – importance and methods.	1		251-254	
19	Milling of corn and its products. Dry and wet milling.	2	Ch 15	226-234	15
20	Milling of wheat, unit operations and equipment	2	Ch 13	235-238	
21	Processing of sorghum			Notes HOD, Parbhani	
22	Processing of millets			Notes HOD, Akola	
23- 25	Modern Milling Methods, pre- conditioning, dry milling and wet milling methods for pulses: CFTRI and Pantnagar methods. Problems and factors affecting milling. Numerical on pulse milling efficiency	1	Ch 5	274-285	10
26- 27	Processing of oilseeds: mechanical expression, screw press, hydraulic press, solvent extraction methods,	1	Ch 5	244-249	

Lect. No.	Title	Book No.	Chapter / Art No.	Page No	Weighta ge (%)
28- 29	Mixing: Theory of mixing of solids and pastes, Mixing index, types of mixers for solids, liquid foods and pastes.	3	Ch12	166-173	5
30	Material handling devices. Types of conveyor. Belt conveyor – components, capacity.	1	Ch 6	289-297	
31	Bucket elevator – components, capacity	1	Ch 6	297-305	10
32	Screw conveyor – components, capacity	1	Ch 6	305-308	
	Pneumatic conveyor	1	Ch 6	308-309	

List of Practical

No.	Title
1	Determination of grain moisture content and numerical
2	Study of drying curves
3	Determination of relative humidity and use of physcrometric chart and numerical
4	Study of EMC curves and numerical
5	Study of Air screen cleaner
6	Study of Specific gravity separator
7	Study of spiral separator
8	Study of indented separator
9	Study of various types of grain dryers
10	Study of hammer mill and attrition mill
11	Study of rice mill and dal mill
12	Determination of fineness modulus and uniformity index
13	Study of mixing equipment
14	Study of bucket elevator
15	Study of screw conveyor and belt conveyor
16	Visit to rice mill, roller mill, dhal mill and oil mill

Suggested readings Recommended Text Books

No.	Author	Title & Year	Publisher
1	Sahay K. M. and	Unit Operations of Agricultural	Vikas Publishing House Pvt. Ltd.
	K.K. Singh	Processing. 2002	576, Masjid Road, Jangpura,
	_		New Delhi – 110 014
2	A. Chakraverty	Post Harvest Technology of	Oxford & IBH Publishing Co. Pvt.
		Cereals, Pulses and Oilseeds.	Ltd., 66, Janpath, New Delhi – 110
			001
3	Earle, R. L.	Unit operations in Food	Pergamon Press, New York. USA
		processing.	

Reference Book

1	Henderson, S.M.,	Agricultural Process	Chapman and hall, London
	and Perry, R. L.	Engineering,	

Course No.: REE-243Course: Fundamentals of Renewable EnergySemesters: IVCredits : 3(2+1)

2	Pande P.H.	Principles and Practices of Post Harvest Technology, 2007	Kalyani Publishers, Ludhiana
3	Geankoplis C. J.	Transport processes and unit operations,	Prentice Hall of India Pvt Ltd, New Delhi

Syllabus:

Theory

Concept and limitation of Renewable Energy Sources (RES), Criteria for assessing the potential of RES, Classification of RES, Solar, Wind, Geothermal, Biomass, Ocean energy sources, Comparison of renewable energy sources with non renewable sources. Solar Energy: Energy available from Sun, Solar radiation data, solar energy conversion into heat through, Flat plate and Concentrating collectors, different solar thermal devices, Principle of natural and forced convection drying system, Solar Photo voltaics: p-n junctions. Solar cells, PV systems, Stand alone, Grid connected solar power station, Calculation of energy through photovoltaic power generation and cost economics. Wind Energy: Energy available from wind, General formula, Lift and drag. Basis of Wind energy conversion, Effect of density, Frequency variances, Angle of attack, Wind speed, Types of Windmill rotors, Determination of torque coefficient, Induction type generators, Working principle of wind power plant. Bio-energy: Pyrolysis of Biomass to produce solid, liquid and gaseous fuels. Biomass gasification, Types of gasifier, various types of biomass cook stoves for rural energy needs. Biogas: types of biogas plants, biogas generation, factors affecting biogas generation and usages, design consideration, advantages and disadvantages of biogas spent slurry.

Practical

Study of different types of solar cookers, solar water heating system, natural convection solar

Dryer, forced convection solar dryer, solar desalination unit, solar greenhouse for agriculture production, biogas plants, biomass gasifiers, biomass improved cook-stoves, solar photovoltaic system.

Lec.	Topics to be covered	Book	Chp.	Article No.	Page No.
No.		no.	No.		
1-2	Concept and limitation of Renewable Energy Sources (RES), Criteria for assessing the potential of RES,	1	1	1.5-1.6	35-43
	assessing the potential of KES,	7	1	1.1-1.6	1-22
	Classification of RES, Solar, Wind,	6	1	1.3-1.7	3-24
	Geothermal, Biomass, Ocean energy sources, Comparison of renewable energy	1	1	1.4	4-8
	sources with non renewable sources.				15-32

Teaching Schedule:

5-6	Solar Energy: Energy available from Sun, Solar radiation data	2	3	3.1-3.9	39-69
7-9	solar energy conversion into heat through, Flat plate and Concentrating collectors,		3	3.1-3.3 3.7-3.8	73-86 102-112
	different solar thermal devices,				
10-11	Solar cooker Solar water heater Solar Distillation Solar Dryer	1	6	6.4-6.7	112-125
12-14	Solar Photo voltaics: p-n junctions. Solar cells, PV systems, Stand alone, Grid connected solar power station		15	15.1-15.07	433-462
15-16	Calculation of energy through photovoltaic power generation and cost		15	15.12 15.13	478-481 485-486
17-20	Wind Energy: Energy available from wind, General formula, Lift and drag. Basis of Wind energy conversion, Effect of density, Frequency variances, Angle of attack, Wind speed		6	6.1, 6.2 6.4 6.5 to 6.8 6.13	227-240 252 256-277 299-305
21-25	Types of Windmill rotors, Determination of torque coefficient, Induction type generators, Working principle of wind power plant.				
26-27	Bio-energy: Pyrolysis of Biomass to produce solid, liquid and gaseous fuels.	1	7	7.2	319-324
28-30	Biomass gasification, Types of gasifier	1	7	7.24	395-405
	Various types of biomass cook stoves for rural energy needs.	8	7	7.1 to 7.7	115-132
31-32	Biogas: types of biogas plants, biogas	1	7	7.4 to 7.9	327-353
	generation, factors affecting biogas generation and usages, design consideration Advantages and			7.14, 7.15	365-375
	disadvantages of biogas spent slurry.	3	8	8.1 to 8.6	51-58
		3	9	9.1 to 9.3	58-60

Practical Exercises:

Prac. No.	Title of practical
1.	Study of different types of solar cookers
2.	Study of solar water heating system
3.	Study of solar photovoltaic system
4.	Study of natural convection solar dryer
5.	Study of forced convection solar dryer
6.	Study of solar desalination unit
7.	Study of solar greenhouse for agriculture production

8.	Study of biogas plants
9.	Study of biomass gasifiers
10.	Study of biomass improved cook-stoves

List Text Books / Reference Books:

Sr.No.	Author	Title & year	Publisher
1.	Rai, G.D.	Non-Conventional Energy Sources	Khanna Publishers, Delhi.
			2013.
2.	Rai, G.D.	Solar Energy Utilization	Khanna Publishers, Delhi
3.	Khandelwal, K.C.	Biogas Technology- A Practical	1990
	S. S. Mandi.	Handbook	
4.	Rathore N. S.,	Non Conventional Energy Sources	Himanshu Publications
	Kurchania A. K.,		2007
	Panwar N. L.		
5.	Tiwari, G.N. and	Renewable Energy Resources: Basic	Narosa Pub. House. Delhi
	Ghoshal, M.K.	Principles and Applications.	2005
6.	Rathore N. S.,	Renewable Energy, Theory and	Himanshu Publications
	Kurchania A. K.,	Practice	2007
	Panwar N. L.		
7.	John Twidell and	Renewable Energy Sources	Taylor & Francis Group,
	Tony Weir		London & N.York
8.	Rathore N. S.,	Biomass Production and Utilization	Himanshu Publication
	Panwar N. L.,	Technology	
	Surendra Kothari		

Course No.	:	FS-244	Course Title	:	Building Construction and Cost Estimation
Semester	:	IV	Credits	:	2(1+1)

Syllabus

Theory:

Building Materials: Rocks, Stones, Bricks Properties and varieties of Tiles, Lime, Cement, Concrete, Sand. Glass, Rubber, Plastics, iron, Steel, Aluminium, Copper, Nickle. Timber. Building components: Lintels, Arches, stair cases, Different types of floors, Finishing: Damp Proofing and water proofing, Plastering, pointing, white washing and distempering – Painting, Building design, Design procedures, Technology, building construction, Types of agricultural buildings and related needs, application of design theory and practice to the conservation, sloped and flat roof buildings, construction economics: Preliminary estimates, Detailed Estimates of Buildings source of cost information, use of cost analyses for controlling design, Factors affecting building costs; cost evaluation of design and planning alternatives for building and estate development, Measurement and pricing, Economic methods for evaluating investments in buildings and building systems: cost-in-use, benefit-to-costs and savings-to-investment ratios, rate of return, net benefits, payback.

Practical:

Testing of stones, bricks, cement, sand, aggregates, workability of cement, timber, components of agriculture structures, material and cost estimation of agriculture structures.

Teaching Schedule

Lect.	Торіс	Book	Article	Page No.	Weightage
No.		No.	No.		%
1	Stones- Classification, uses, Quarrying,	1	1.1 to 1.5	1-8	
	Characteristics				-
2	Bricks – Preparation, types, classification,	1	2.1 to	15-23	25%
	testing		2.13		2370
3	Cement – types, grades, storage, testing	1	5.5 to	38 - 48	
			5.10		
4	Cement concrete – ingredients, water	1	11.1 to	85 - 89	
	cement ratio, specifications, properties,		11.7		
	mixing, placing, curing				
5	Aggregates	1	7.1 to 7.3	55-56	25%
			8.1 to 8.4	62-64	
6	Rubber – Natural, polymer/synthetic,	1	23.1 to	182-184	
	vulcanization, uses		23.7		
7	Plastics – polymerization, classification,	1	24.1 to	185-188	
	properties		24.5		
8	Building components-				
	Arches	2	-	286-292	250/
	Lintels	2		302-304	25%
9	Roofs		-	391-396	
	Floors	2		425-430	
10	Doors and windows – types, ledged doors	2	-	309-316	
11	Pointing and plastering	2	-	689-693	
12-13	Painting and distempering	2	-	707-717	
14	Methods of estimates	3		4-6	25%
		4	2.1, 4.1	2-4, 32-33	23%
15	Factors considered during preparation of	4	2.9	77	
	estimates				

Practical Exercises:

SN	Title
1.	Study of different types of rocks.
2.	Study of water absorption of stone and brick materials.
3.	Determination of soundness of cement by Lechatelier apparatus.
4.	To determine fineness of cement.
5.	Test of adhesiveness of mortar to building units.
6.	To determine standard consistency of cement.
7.	To determine initial setting time of cement.
8.	To test workability of cement by Slump cone method.
9.	To test workability of cement by Compaction factor method.
10.	Determination of Bulking of sand and silt content in the sand.
11.	To determine void ratio and bulk density of fine aggregate and course aggregate.
12.	Study of market forms of timber.
13.	Measurement of components of an agricultural structure.
14.	Preparation of an estimate of agricultural structure.
15.	Visit to a construction site and to brick kiln / cement factory/ stone quarry / other building material.

Suggested readings:-

Author	Year	Title	Publisher
Text Book			
P.C. Verghese	2005	Building Materials	PHI Learning Private Limited, M-97, Connaught Circus, New Delhi – 110001
S.C. Rangwala	2007	Building Construction	Charotar Publishing House, Oppo. Amul Dairy, Court road, Anand – 388001
B.N. Dutta	1993	Estimating and Costing in Civil Engineering – Theory and Practice	UBS publishers' Distributors Ltd., 5 Ansari Road, New Delhi – 110002
M. Chakraborti	2012	Estimating, Costing, Specification and Valuation in Civil Engineering	Monojit Chakraborti, 21 B, Bhabananda, Kolkatta – 700026
Reference Books			
Punmia B.C. Ashok Kumar Jain and Arun Kumar Jain	2000	Building Construction	Laxmi Publications (P) ltd., New Delhi
Duggal S K	2000	Building material	New Age International Publishers
Sane Y.S	2000	Planning and Designing of Buildings	Charotar Publishing House, Anand
Rangwala S C	1994	Engineering Materials	Charotar Publishing House, Anand

SEMESTER : V

Course No : FMPE-358

Course Title: Farm Machinery and Equipment-I

Credits: 2(1+1)

Semester:- V

Theory

Introduction to farm mechanization. Classification of farm machines. Unit operations in crop production. Identification and selection of machines for various operations on the farm. Introduction to machines used for primary tillage, secondary tillage, rotary tillage, deep tillage and minimum tillage. Measurement of draft of tillage tools and calculations for power requirement for the tillage machines. Introduction to tillage machines like mould-board plough, disc plough, chisel plough, sub-soiler, harrows, cultivators, Identification of major functional components. Attachments with tillage machinery. Hitching systems and controls of farm machinery. Calculation of field capacities and field efficiency. Calculations for economics of machinery usage, comparison of ownership with hiring of machines. Introduction to seed-bed preparation and its classification. Introduction to sowing, planting & transplanting equipment. Introduction to seed drills, no-till drills, and strip-till drills. Introduction to planters, bed-planters and other planting equipment. Study of types of furrow openers and metering systems in drills and planters. Calibration of seed-drills/ planters. Adjustments during operation. Fertilizer application equipment. Weed control machineries. Familiarization with land reclamation and earth moving equipment.

Practical

Familiarization with different farm implements and tools. Study of hitching systems, Problems on machinery management. Study of primary and secondary tillage machinery – construction, operation, adjustments and calculations of power and draft requirements. Study of sowing and planting equipment – construction, types, calculation for calibration and adjustments. Study of transplanters – paddy, vegetable, etc. Study of weeding equipments manual wheel hoe, bullock drawn and power operated inter-row cultivator and their use. Study of earth moving equipment.

Lecture No.	Торіс	Book No.	Chapter, Art. No.	Page No.
1, 2	Objectives of farm mechanizations. Classifications of farm machines.	1	1.5	6-9
3	Principles of operation and selection of machines used for production of crops.	2	24	7-15
4, 5, 6, 7	Primary and secondary tillage equipment, Problems	3	3.1-3.6	59-81
8, 9	Forces acting on tillage tools, Hitching systems	1	13.14	235-236
	and controls. Draft measurement of tillage	7	3.3.3	6-7
	equipments. Field capacities & economics			
10, 11, 12	Sowing planting and transplanting equipment, their calibration and adjustments. Problems	5	3	36-70
13	Fertilizer application equipment	2	14	270-284
14	Weed control	6	11	81-91
15, 16	Earth moving equipment, their construction & working principles viz. Bulldozer, Trencher, Elevators	4	22	313-318, 320-321

Lesson Plan

Lesson plan with weightages (%)

Unit No.	Торіс	Weightages, %
Ι	Objectives of farm mechanizations.	15
	Classifications of farm machines.	
	Principles of operation and selection of machines used for production of crops.	
II	Primary and secondary tillage equipment, Problems	40
	Forces acting on tillage tools, Hitching systems and controls. Draft measurement of tillage equipments.	
III	Field capacities & economics Sowing planting and transplanting equipment, their calibration and adjustments. Problems	35
	Fertilizer application equipment Weed control	
IV	Earth moving equipment, their construction & working principles viz. Bulldozer, Trencher, Elevators	10
	Total	100

Practical Exercises

Exercises	Title
No.	
1.	Introduction to various farm machines, visit to implements shed.
2, 3, 4	Study of constructional details, adjustments and working of M.B. plow and disc
	plow.
4	Study of constructional details, adjustments and working of disc plow.
5,6	Study of constructional details, adjustments and working of disc harrow and
	secondary tillage tools.
7	Measurement of draft and fuel consumption for different implements under
	different soil conditions.
8	Measurement of Field capacity and field efficiency for at least two
	machines/implements for field machine and crop machine.
9, 10	Study of construction and working of rotavators and other rotary tillers,
	measurement of speed and working width.
11,12	Study of working of seed-cum-fertilizer drills, planters and their calibration in
	field.
13, 14	Study of working of transplanters and operation.
15	Study of weeding equipments manual wheel hoe, bullock drawn and power
	operated inter-row cultivator and their use.
16	Study of earth moving equipment.

Suggested readings

Text Books:

- 1) Elements of Agricultural Engineering by Jagdishwar Sahay.
- 2) Farm Machinery and Equipments by Smith and Wikes (1983 edition)
- 3) Elements of Farm Machinery by A. C. Shrivastav (1990 edition)
- 4) Farm Machinery by Kulpin C.
- 5) Farm Machinery and approach by S. C. Jain, Grace and Philip.
- 6) Practical farm machinery vol. 1 and 2 by Bhattacharya.
- 7) RNAM Test codes and Procedures for Farm Machinery

Reference Books:

- 1. Principles of farm machinery by Kepner, Bainer and Barger CBS Publisher and distributor, Delhi (1987) Indian edition.
- 2. Principles of Agricultural Engineering Vol. 1 by A. M. Michael and T. P. Ojha.

Agricultural Engineering through worked example by Radheylal (1971 edition).

Course Code: FMPE – 359 Credits: 1(0+1) Course Title : CAD Applications Semester:- V

Syllabus

Practical

Application of computers for design. CAD- Overview of CAD window – Explanation of various options on drawing screen. Study of draw and dimension tool bar. Practice on draw and dimension tool bar. Study of OSNAP, line thickness and format tool bar. Practice on OSNAP, line thickness and format tool bar. Practice on mirror, offset and array commands. Practice on trim, extend, chamfer and fillet commands. Practice on copy, move, scale and rotate commands. Drawing of 2 D- drawing using draw tool bar. Practice on creating boundary, region, hatch and gradient commands. Practice on Editing polyline- PEDIT and Explode commands. Setting of view ports for sketched drawings. Printing of selected view ports in various paper sizes. 2D- drawing of machine parts with all dimensions and allowances- Foot step bearing and knuckle joint. Sectioning of foot step bearing and stuffing box. Drawing of hexagonal, nut and bolt and other machine parts. Practice on 3-D commands- Extrusion and loft. Practice on 3-D commands-on sweep and press pull. Practice on 3-D Commands- revolving and joining.

Practical Exercises

Exercises	Title of practical
No.	
1	Introduction to basic structure of CAD software. Study of draw and dimension tool bar.Practice on draw and dimension toolbar.
2	Practice on trim, extend, chamfer and fillet commands.
3	Practice on copy, move, scale and rotate commands.Practice of OSNAP, line thickness and format tool bar.
4	Practice on mirror, offset and array commands.
5	Drawing of 2 D- drawing using draw tool bar.
6	Practice on creating boundary, region, hatch and gradient commands.
7	Practice on Editing polyline- PEDIT and Explode commands.
8	Setting of view ports for sketched drawings
9	Printing of selected view ports in various paper sizes.
10-11	2D drawing of machine parts with all dimensions and allowances-
	1. Foot step bearing and printing
	2. knuckle joint and printing
12	Sectioning of foot step bearing and stuffing box.

13-14	Drawing of hexagonal, nut and bolt and other machine parts and printing
15-16	Practice on 3-D commands

Teaching Schedule – Theory with weightages (%)

Unit	Practical No.	Title of practical	Weightages (%)
1	1	Study of overview of CAD window and various options on drawing screen. Study of draw and dimension tool bar. Practice on draw and dimension toolbar.	10
	2	Practice on trim, extend, chamfer and fillet commands.	
2	3	Practice on copy, move, scale and rotate commands. Practice of OSNAP, line thickness and format tool bar.	10
	4	Practice on mirror, offset and array commands.	
3	5	Drawing of 2 D- drawing using draw tool bar.	10
4	6	Practice on creating boundary, region, hatch and gradient commands.	10
	7	Practice on Editing polyline- PEDIT and Explode commands.	
5	8	Setting of view ports for sketched drawings	10
	9	Printing of selected view ports in various paper sizes.	
6	10	2D drawing of machine parts with all dimensions and allowances- Foot step bearing and printing	10
	11	2D- drawing of machine parts with all dimensions and allowances- knuckle joint and printing	
7	12	Sectioning of foot step bearing and stuffing box.	10
8	13	Drawing of hexagonal, nut and bolt and other machine parts and printing	10
9	14	Practice on 3-D commands	10
	15	Practice on 3-D commands	
10	16	Working of CNC machine. Demonstration of simple problems on it.	10

Suggested readings

Reference Books:

- 1 Rao P.N..2002. CAD/CAM Principles and Applications. McGraw-Hill Education Pvt. Ltd., New Delhi.
- 2 SareenKuldeep and Chandan Deep Grewal. 2010. CAD/CAM Theory and Practice. S.Chand& Company Ltd., New Delhi.
- 3 Zeid Ibrahim. 2011. Mastering CAD/CAM with Engineering. McGraw-Hill Education Pvt. Ltd., New Delhi.

Course Code: FMPE-3510

Course Title : Field operation and Maintenance of Tractor and Farm Machinery Semester:- V

Credits: 1(0+1)

Syllabus

Unit	Practical No.	Title
1	1-2	Familiarization with different make and models of tractors Study of different tools required for repair and maintenance of tractor
2	3	Identification of functional system of tractor, Familiarization with different controls on tractor
3	4	Driving practice of tractor, safety rules and precautions, trolley forwarding and reversing, fuel saving tips
4	5	Hitching and De-hitching of mounted and trailed type implements
5	6-7	Tractor maintenance schedule -precautionary and break down maintenance. Tractor starting with low battery charge.
6	8-9	Field operation with M.B. plough, Disc plough, Rotavator, cultivator etc.
7	10-11	Field operation with self-propelled machine viz. reaper, mower
8	12-13	Familiarization with different controls of power tiller and driving practice
9	14-15	Repair and maintenance of different agricultural equipments and machinery
10	16	Replacement criteria for parts of machine

Reference Books :

- 1. Farm Tractor Maintenance and Repair. By S.C. Jain and C.R. Rai. Tata Mc Graw Hill Pub. Co. Ltd., 12/4 Asaf Ali Road, New Delhi.
- 2. Farm Machinery Equipment By C.P. Nakra, Dhanpat Rai & Sons, 1962, Nai Sarak Delhi.
- 3. Elements of Farm Machinery By A.C. Srivastava Oxford & IBH Publishing Co. Pvt. Ltd. New Delhi, Bombay.
- 4. Farm Power Machinery Management by Donel Hunt. Lowa state Univ. Press. Ames Low. The operation care and repairs of Farm machinery, Deere and Company.
- 5. A Workbook of Practical Farm Machinery, Volume I and Volume 2 by Dr. T.K. Bhattacharya, Saroj Prakashan, 646 Katra, Allahabad 211 002.

Course No.: SWCE-355

Credits: 3(2+1) Syllabus

Semester: V

Theory

Water harvesting - principles, importance and issues. Water harvesting techniques classification based on source, storage and use. Runoff harvesting - short-term and long - tem Short - term harvesting techniques - terracing and bunding, rock and ground techniques. catchments. Long-term harvesting techniques – purpose and design criteria. Structures – farm ponds - dug out and embankment reservoir types, tanks and subsurface dykes. Farm pond components, site selection, design criteria, capacity, embankment, mechanical and emergency spillways, cost estimation and construction. Percolation pond - site selection, design and construction details. Design considerations of nala bunds. Soil erosion control structures introduction, classification and functional requirements. Permanent structures for soil conservation and gully control - check dams, drop, chute and drop inlet spillways - design requirements, planning for design, design procedures – hydrologic, hydraulic and structural design and stability analysis. Hydraulic jump and its application. Drop spillway – applicability, types – straight drop, box – type inlet spillways – description, functional use, advantages and disadvantages, straight apron and stilling basin outlet, structural components and functions. Chute spillway - description, components, energy dissipaters, design criteria of Saint Antony Falls (SAF) stilling basin and its limitations. Drop inlet spillway – description, functional use and design criteria.

Practical

Study of different types of farm ponds. Computation of storage capacity of embankment type of farm ponds. Design of dugout farm ponds. Design of percolation pond and *nala* bunds. Runoff measurement using H-flume. Exercise on hydraulic jump. Exercise on energy dissipation in water flow. Hydrologic, hydraulic and structural design of drop spillway and stability analysis. Design of SAF stilling basins in chute spillway. Hydrologic, hydraulic and structural design of drop spillway. Design of small earthen embankment structures. Practice on software's for design of soil and water conservation structures. Field visit to watershed project areas treated with soil and water conservation measures / structures.

Teaching Schedule- Theory with weightages (%)

S.N	Торіс	Book No.	Article No.	Page No.	Weightage (%)
1 & 2	Water harvesting: Principles, importance and issues, Water harvesting techniques – classification based on source, storage and use.	5	14.1,14.2 14.3	523-525	
3 & 4	Runoff harvesting : short-term and long - term techniques. Short - term harvesting techniques – terracing and bunding, rock and ground catchments.	5	14.3.1 & 14.3.1.1	525-526	20
5&6	Long-term harvesting techniques – purpose and design criteria. Structures – farm ponds – dug out and embankment reservoir types, tanks and subsurface dykes. Flood water harvesting	5	14.3.1.2,14 .4	527-531	
7&8	Farm pond : components, site selection, design criteria, capacity, Numericals	3	27.1, 27.2, 27.3	539-542	
9,10 &	Types of earthen Embankment, Rolled fill & Hydraulic fill dam, Design criteria & Design of earthen dam; Numericals	5	16.1-16.3	553-560	20
	Mechanical and emergency spillways, cost estimation and construction.	4	10.15,10.1 6	208-212	20
11&1 2	Percolation pond/ <u>tank:</u> site selection, design and construction details.	6	3.7.1	115-125	
13 & 14	Nalabunding: Location, Execution, Practices Adopted	1	4.3	149-151	
15	Soil erosion control structures: introduction, classification and functional requirements.	4	9.1 & 9.2	172-173	
16, 17, & 18	Permanent structures for soil conservation and gully control : check dams, drop, chute and drop inlet spillways	1	5.3	226-232	25
19 & 20	Design procedures – hydrologic, hydraulic and structural design	5	5.1,5.2, & 5.3	190-193	
21	Stability analysis (Check against Overturning, Sliding, Tension, Compression and Piping)	5 1	5.4.1 5.6	209-212 282-284	
22 23, 24	Hydraulic jump and its application. Drop spillway : applicability, types – straight drop, box – type inlet spillways – description, functional use, advantages and disadvantages, Numericals	5 1	5.4 5.4	<u>194-195</u> 234-240	35
25 & 26	Straight apron and stilling basin outlet, structural components and functions.	5	5.4	201-206	

27, 28	Chute spillway : material, functional uses, adaptability, advantages,	1	5.4	251-253	
	limitations, components, Numericals				
29& 30	Design criteria of Saint Antony Falls (SAF) stilling basin , Numericals	5	5.6	221-223	
31& 32	Drop inlet spillway: description, functional use and design criteria, Numericals.	1	5.4	253-259	

Practical Exercises

Exercise No.	Title
1	Study of different types of farm ponds.
2	Computation of storage capacity of embankment type of farm ponds.
3-4	Design of dugout farm ponds
5	Design of percolation pond
6	Design of <i>nala</i> bunds
7	Runoff measurement using H-flume
8	Design and stability analysis of permanent structures
9	Stability analysis of drop spillway
10	Design of SAF stilling basin in chute spillway .
11	Design of drop inlet spillway
12	Design of small earthen embankment
13-14	Study of software's for design of soil and water conservation structures
15-16	Visit to watershed

Suggested readings Text Books:

- 1. Singh Gurmel, C. Venkataraman, G. Sastry and B. P. Joshi. 2004, 6thed. Manual of Soil and Water Conservation Practices. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi.
- 2. Michael, A.M. and T.P. Ojha 2003. Principles of Agricultural Engineering. Volume II. 4th Edition, Jain Brothers, New Delhi.
- 3. Murthy, V.V.N. 2002. Land and Water Management Engineering. 3rd Edition, Kalyani Publishers, New Delhi.
- 4. Schwab, G.O., D.D. Fangmeier, W.J. Elliot, R.K. Frevert. 1993. Soil and Water Conservation Engineering. 4th Edition, John Wiley and Sons Inc. New York.
- 5. Suresh, R. 2014. Soil and Waer Conservation Engineering. Standard Publisher Distributors, New Delhi.
- 6. Samra, J.S., V.N. Sharda and A.K. Sikka. 2002. Water Harvesting and Recycling: Indian Experiences. CSWCR & TI, Dehradun, Allied Printers, Dehradun.

Reference Books:

- 1) Theib Y. Oweis, DiterPrinz and Ahmed Y. Hachum. 2012. Rainwater Harvesting for Agriculture in the Dry Areas. CRC Press, Taylor and Francis Group, London.
- 2) Studer Rima Mekdaschi and HanspeterLiniger. 2013 Water Harvesting Guidelines to Good Practice Centre for Development and Environment. University of Bern. Switzerland.

Course No.	:	IDE- 353	Credits	:	3=2+1
Course Title	:	Groundwater, Wells and Pumps	Semester	:	III

Syllabus:

Theory:

Occurrence and movement of ground water; aquifer and its types; classification of wells, fully penetrating tubewells and open wells, familiarization of various types of bore wells; design of open wells; groundwater exploration techniques; methods of drilling of wells: percussion, rotary, reverse rotary; design of tubewell and gravel pack, installation of well screen, completion and development of well; groundwater hydraulics-determination of aquifer parameters by different method such as Theis, Jacob and Chow's, Theis recovery method; well interference, multiple well systems, estimation of ground water potential, quality of ground water; artificial groundwater recharge techniques; pumping systems: water lifting devices; different types of pumps, classification of pumps, component parts of centrifugal pumps, priming, pump selection, installation and trouble shooting, performance curves, effect of speed on capacity, head and power, effect of change of impeller dimensions on performance characteristics; propeller pumps, mixed flow pumps and their performance characteristics; deep well turbine pump and submersible pump.

Practical:

Verification of Darcy's Law, Study of different drilling equipments, Design of gravel pack and well screen, Estimation of specific yield and specific retention, Estimation of aquifer parameters by Theis method, Estimation of aquifer parameters by Coopers-Jacob method, Estimation of aquifer parameters by Chow method, Theis Recovery method, Design of well under confined and unconfined conditions, Well losses and well efficiency, Estimating ground water balance, Study of artificial ground water recharge structures, Study of radial flow and mixed flow centrifugal pumps, multistage centrifugal pumps, turbine, propeller and other pumps, Study of centrifugal pump, Installation and testing of centrifugal pump, Study and Installation of submersible pump.

Teaching Schedule:

Lecture No.	Topics	Article No.	Page No.	Book	Weightage, (%)
Unit I					
(A)	Ground water and wells				20
1	Occurrence and movement of ground water:				20
	Origin and age of groundwater, rock properties affecting		23-28, 6-8	2, 3	
	groundwater,	2.2		1	
	Important definitions,		59-63		
	hydraulic				
	Conductivity, transmissibility,				
	coefficient of storage, specific				
	yield, hydraulic resistance,				
	leakage factor				
2	Aquifer and its types	1.2	7-9	1	
3	Classification of wells	1.10	25-28	1	
	Fully penetrating tubewells				
	and open wells,				
	Familiarization of various				
	types of bore wells				
4	Steady and transient flow				
	into partially, fully and non	2.3	63-71	1	
	penetrating and open wells:				
	Steady state flow to wells in				
	unconfined aquifers				
	Steady state flow to wells in				
	confined aquifers				
	Unsteady state flow to wells in				
	unconfined aquifers	2.4	74-76	1	
	Unsteady state flow to wells in				
	confined aquifers				
Unit II				1	
5	Ground water exploration	1.11	33-39	1	25
	techniques				
	Surface investigations of				
	groundwater, sub surface				
-	investigations of groundwater	2.2		1	
6	Design of open well	3.2	99-	1	
7	Mothedge of Julius and a line	5.0	114	1	
7	Methods of drilling of wells:	5.2 5.3	222- 229	1	
	Drilling equipment and methods,	5.3 5.4	229		
		5.6	241-242		
	Percussion drilling	5.6 5.10	242 258-		
	Rotary drilling	5.10	258-260		
	Reverse rotary drilling	3.11	200		
8	Design of tubewell and gravel	4.9	192-	1	
0	pack:	4.10	192-		
	Design of tube well, analysis of	4.11	177		
	particle-size distribution of the	4.12			
	aquifer, design of housing pipe				

	1				
	and well casing, bore size and				
	well depth, selection of strata				
	to be screened				
9	Installation of well screen:	4.13	198-	1	
	Design of well screen, slot		202		
	opening, percent open area,				
	diameter of the screen				
10	Design of gravel pack:	4.14	202-	1	
	design criteria for gravel pack,		210		
	Gravel pack material, screening				
	of gravel				
11	Completion and development	6.1,			
	of well	6.2,	310-	1	
		6.3	329		
		0.0	0		
Unit III					
12	Groundwater hydraulics				15
	aquifer parameters				
	determination:	2.4	75-84	1	
	Theis method				
	Cooper-Jacob method				
	Chow method				
	Recovery method (Theis)				
13	Well interference	2.6	88-91	1	
14	Multiple well systems	4.5	179-	1	
			180		
15	Ground water quality		291-	2	
			301		
16	Artificial ground water	1.12	39-42	1	
	recharge techniques				
	Concept of artificial recharge,				
	Recharge methods				
17	Estimation of ground water	Notes to be			
	potential	circulated			
Unit IV	1				T
(B)	Pumps				20
18	Pumping systems and				
	machinery:	10.1	486-	1	
	Principles of lifting and	10.2	513		
	moving of water, water lifting	10.3			
	devices: scoop, swing basket,	10.4			
	Archimedean screw,				
	counterpoise bucket lift,				
	Persian wheel				
19	Classification of pumps		487	1	
20	Centrifugal pump:				
	Classification of variable	12.1	619-	1	
	displacement pumps, principles	12.2	630		
	of operation of centrifugal	12.3			
	or operation of continuzat	12.0			
	pumps, classification of	12.0			

21	Power requirements in pumping	12.8	640- 644	1	
22	Pump characteristic curves	12.9	645- 648	1	
23	Pump performance:Effect of change of speed onhead, capacity, power andefficiencyEffect of change of impellerdiameter on head, capacity,power and efficiency		650- 652	1	
T T 1 / T T	System head curve				
Unit V		10.11	(50	1	20
24	Selection of centrifugal pump	12.11	652- 657	1	20
25	Design of centrifugal pumps	13.1	676- 683	1	
26	Centrifugal pump installation and trouble shooting: Location, pump foundation, installation of centrifugal pump in shallow/deep open well and in tube well	14.1 14.2 14.3 14.4 14.5	708- 711 716- 727	1	
27	Trouble-shooting in centrifugal pumps		737-744		
28	Propeller pumps: Introduction, principles of operation, construction, operating characteristics, installation	16.1 16.2 16.3 16.4	797- 806	1	
29	Mixed flow pumps: Principles of operation, operating characteristics and installation, selection of mixed flow pump	16.8 16.9 16.10	812- 815	1	
30	Priming and self Priming	3.6	225- 226	4	
31	Rotodynamic pumps: Deep well turbine pump: Introduction, principle of operation, construction, characteristics of pump, selection of pump	15.1 15.2 15.3 15.4	747- 755	1	
32	Submersible pumps: Introduction, construction, installation, operation of pump, common troubles in operation and remedies	15.11 15.12 15.14 15.16	780- 795	1	

Practicals:

- 1. Verification of Darcy's Law
- 2. Study of different drilling equipments
- 3. Design of gravel pack and well screen
- 4. Estimation of specific yield and specific retention
- 5. Estimation of aquifer parameters by Theis method.
- 6. Estimation of aquifer parameters by Coopers-Jacob method.
- 7. Estimation of aquifer parameters by Chow method.
- 8. Theis Recovery method
- 9. Design of well under confined and unconfined conditions
- 10. Well losses and well efficiency
- 11. Estimating ground water balance
- 12. Study of artificial ground water recharge structures
- 13. Study of radial flow and mixed flow centrifugal pumps, multistage centrifugal pumps, turbine, propeller and other pumps
- 14. Study of centrifugal pump.
- 15. Installation and testing of centrifugal pump.
- 16. Study and Installation of submersible pump.

Suggested Readings

Text books

-			
Sr.	Title	Author	Publication
No.			
1	Water well and pump	A.M.Michael and	Tata McGraw-Hill publishing
	engineering	S.D.Khepar	Company Ltd. New Delhi
	(9 th Edition, 2005)		
2	Groundwater hydrology (2 nd	David Keith Todd	John Wiley and sons, New York
	Edition)		(International Book Disturbing
			Co. Lucknow)
3	Irrigation: Theory and	A.M. Michael	Vikas publishing house Pvt. Ltd.
	Practices		New Delhi

Reference books

4	Groundwater Assessment and		Tata McGraw-hill publishing
	Management (11 th Edition, 2007)		Company Ltd. New Delhi.
5	Irrigation Engineering and Hydraulic Structures (14 th Edition, 1999)	S.K.Garg	Khanna Publisher 2-13 Nath Market Naisaraf Delhi-06
6	Groundwater hydrology	Herman	McGraw-hill publishing Company Ltd.
	(International student Edition)	Bouwer	New York.

Course No.	:	IDE-354	Credits	:	3 =2+1
Course Title	:	Drainage Engineering	Semester	:	V

Syllabus:

Theory:

Drainage, objectives of drainage, familiarization with the drainage problems of the state. Surface drainage, drainage coefficient, types of surface drainage, design of open channel, subsurface drainage purpose and benefits, investigations of design parameters, hydraulic conductivity, drainable porosity, water table etc., drainage criteria, types and use of subsurface drainage system. Design of surface drains, interceptor and relief drains. Derivation of ellipse (Hooghoudt's) and Ernst's drain spacing equations. Steady and unsteady state groundwater condition, dynamic equilibrium concept. Design of subsurface drainage system. Drainage materials, drainage pipes, drain envelope. Layout, construction and installation of drains. Drainage structures. Vertical drainage. Bio-drainage. Tile drains. Drainage of irrigated and humid areas. Salt balance, reclamation of saline and alkali soils. Leaching requirements, conjunctive use of fresh and saline waters. Economic aspects of drainage.

Practical:

In-situ measurement of hydraulic conductivity by single auger hole method, *In-situ* measurement of hydraulic conductivity by inverse auger hole method, Determination of drainage coefficients, Installation of piezometer and observation well, Preparation of iso- bath and isobar maps, Determination of drainable porosity by sand tank model, Determination of drainable porosity using field method, Design of surface drainage systems, Design of subsurface drainage systems, Determination of chemical properties of soil and water (EC, pH, ESP or SAR), Cost analysis of surface and sub-surface drainage system, Visit to subsurface drainage project and drainage material manufacturing industry.

Teaching Schedule:

Lecture No.	Topics	Article No	D. Page No.	Boo	k Weightage, (%)	
Unit I						
1	Drainage: Introduction, definition, Drainage problem of the state and country,	1.1, 1.2,	1-17	1	10	
	Causes and effect of waterlogging, prevention and control of waterlogging.	1.3, 1.4, 1.5,				
2	Need of drainage, purpose of drainage, effect of Drainage requirement of various crops	1.6 1.7	18-23	1		
3	Interrelationship of irrigation and drainage	2.1, 2.2, 2.3, 2.3.1, 2.3.2	27-40	1		
Unit II				•		
4, 5	Surface drainage: Introduction, surface drainage system and components, factors affecting drainage, types of land requiring drainage Drainage coefficient	20.1 20.2 f	799-80	07 2	30	
5	Types of surface drainage: Surface drainage for flat areas, Surface drainage for sloping areas, Interceptor drains	20.4- 20.6	814-81 821-82			
7,8,9	Design of surface drainage system: Design consideration, design of surface drainag system, hydraulic design of open channel (drain		230-23 255-26			
10, 11	Subsurface drainage, Drainage properties-Structure and texture, Drainable porosity, Hydraulic conductivity	-	480-48 80-82 87-97	2 4		
12	Subsurface drainage system:		352-			
	Introduction, general considerations, Components of subsurface drainage system and different layouts of subsurface drainage system	8.1 21.1 21.3.7	353 827 846- 849	1 2 2		
Unit III		21.3.1	017	2		
13, 14, 15	Derivation of ellipse (Hooghoudt's), Ernst's drain spacing equations,		149-156 366-369	4	35	
	Unsteady state equation (Glover-Dumn) without		284-287			
16, 17	derivation Dynamic equilibrium concept	2.4.4	47-48	1	-	
18	Drainage criteria for steady and unsteady state				Notes to be circulated	
19	Design of subsurface drainage system- problems	-	-	- 2	Notes to be circulated	
20, 21	Drainage materials: Drainage pipes, envelop	21.3.2	830-844	L		

		21.3.4			
	materials and drainage structures,		-		-
	Design of gravel envelope	21.3.3		2	-
22, 23	Installation of subsurface drainage system	8.12.3 to	418-426	1	-
,		8.12.8			-
24	Subsurface drainage system design:	8.3	355-358	1	
	Procedure, hydraulic design of subsurface				
	drains	8.8	391-400		
25	Mole drainage,	21.7	313-314	2	
	Bio-drainage,	8.16.3	460-466	1	
	Vertical/well drainage	-	579-580	3	
			225-228		
		14.1-14.5		4	
Unit IV					
26	Types of salt affected soil	7.3			25
	Chemical properties of soil,	7.10	313-315	1	
	Classification of soil	15.2.4	540-542	2	
27, 28	Reclamation of saline and alkali soils,	7.12.2	320-323	1	
	Leaching requirement and methods,	7.12.4 to	323-333		
		7.12.6			
	Gypsum requirement	7.13	337-346		
29	Salt balance	15.3	544-548	2	
30	Economic aspect of drainage- problem	8.10	438-446	1	
31	Drainage for humid area, irrigated area				Notes to be
32	Conjunctive use of fresh and saline water				circulated

Practicals:

- 1. In-situ measurement of hydraulic conductivity by single auger hole method
- 2. In-situ measurement of hydraulic conductivity by inverse auger hole method
- 3. Determination of drainage coefficients
- 4-5. Installation of piezometer and observation well
 - 6. Preparation of iso- bath and isobar maps
 - 7. Determination of drainable porosity by sand tank model
 - 8. Determination of drainable porosity using field method
 - 9-10. Design of surface drainage systems
 - 11-12. Design of subsurface drainage systems
 - 13. Determination of chemical properties of soil and water (EC, pH, ESP or SAR)
 - 14. Cost analysis of surface and sub-surface drainage system
 - 15-16. Visit to subsurface drainage project and drainage material manufacturing industry

Suggested Readingsd Text books

Sr. No.	Title	Author	Publisher
1.	Agricultural Drainage:	U.S.Kadam, R.T.Thokal,	Westville Publishing House,
	Principles & Practices	Sunil Gorantiwar, A.G,Powar	New Delhi
	(1 st Edition)		
2.	Drainage Principles and	H. P. Ritzema	ILRI Publication 16,
	Applications		Netherlands.
3	Principles of Agricultural Engineering Vol. II (1 st edition)	A.M.Michael and T.P. Ojha	Jain Brothers Jodhpur
4	Drainage Engineering	J.N.Luthin	Wiley Eastern Pvt. Ltd. New Delhi

Reference books

Sr. No.	Title	Author	Publisher
1.	Land Drainage Principles,	A.K.Bhattacharya	Vikas Publishing House Pvt
	Methods and Applications	A.M.Michael	Ltd., New Delhi

Course Title: Credits:

Syllabus Theory

Food deterioration and spoilage. Physical, chemical and biological methods of food preservation. Nanotechnology. Composition and proximate analysis of food products.

Dairy development in India. Properties of milk and milk products. Unit operation of various dairy and food processing systems. Material and energy balances. Process flow charts for Butter, Ghee (butter oil), Yoghurt, Paneer, Milk powder, Ice-cream, and Cheese. Principles and equipment related to receiving of milk, pasteurization, sterilization, homogenization, centrifugation and cream separation. Dairy plant design and layout.

Principles of operation and equipment for food processing, Canning, Aseptic processing, Evaporation of food products: principle, types of evaporators, steam economy, multiple effect evaporation. Freezing.

Drying and dehydration of liquid and perishable foods: Phase diagram and triple point of water. Cabinet drying, Drum drying, Freeze drying, and Spray drying.

Filtration: principle, types of filters. Membrane separation, RO, Nano-filtration, Ultra filtration and Macro-filtration.

Non-thermal food processing techniques. Filling and packaging. Plant utilities and sanitation requirement.

Practical

Proximate analysis of food. Numerical on material and energy balance. Study of pasteurizers, Study of homogenizers. Study of cream separators. Study of butter churner. Study of evaporators and numerical. Numerical on freezing. Study freeze dryer. Study of spray dryers. Study of food processing plant design and layout, Utilities and estimation of steam requirement for dairy food processing plant. Visit to dairy and food industries.

Lectu re No.	Topics to be covered	Text Book No.	Chapte r No.	Page No./ Rema rks	Weightag e (%)
1.	Introduction to the subject; Dairy Development in India	3	-	-	
2-3	Food deterioration and spoilage. Methods of food preservation.	5	-		
4	Nanotechnology & its application in Dairy Engineering	-	-	Note is to be given	15
5	Properties of milk and milk products	1	1	-	
6	Basic principles of food process engineering, Unit operations in food processing systems	3	1	1 to 3	20
7-8	Mass and energy balance, Basic principle, Material balance, Heat balance	3	2	9 to 21	20

Lesson Plan – Theory

				1 1	
9-10	Process flow charts for Butter, Ghee (butter oil),	6			
	Yoghurt, Paneer, Milk powder, Ice cream and				
	cheese				
11	Pasteurization; effect of time and temperature on	3		72-73	
	pictorial reduction,				
12-13	Types of Pasteurization	1	-	359 to	
	Vat pasteurization, Long hold high temp. short			375	25
	temp (HTST) pasteurizer, ultra high temp(UHT)				
	pasteurizer.				
14	Homogenization, general effect of	1	12	334-	
	homogenization, Theory of homogenization			345	
15-16	Food plant design; site selection and requirement	4	16	342-	
	of services.			344	
17-19	Drying and dehydration; basic drying theory,	3	7	85-89	
	phase diagram & triple point of water, Heat				
	requirement, Heat efficiency Types of drying				10
	equipments such as Cabinet drying, Drum				
	drying, Freeze drying and Spray drying				
20-21	Evaporation single effect, Multiple effect	3	8	105-	10
	evaporator & vacuum evaporator			111	10
22	Freezing & estimation of freezing time	3	6	79-82	
23	Sterilization, Thermal processing	3	6	68-72	10
24	Filtration, Constant rate and Constant pressure	3	10	151-	10
	filtration.			152	
25	Distillation, Steam distillation batch	3	9	138-	
_	······································		-	141	
26	Membrane separation (without problem)	3	9	135-	
_			-	138	05
27-28	Non Thermal processing techniques			Note	
	r01			is to	
				be	
				given	
29	Filling & Packaging of Food Products	2	22	-	
30-31	Plant Utilities, Steam and its applications,	1	7	129 to	
	calculating steam requirement, Utilization of	1		139 &	
	steam, stream piping			159 to	05
	, r-r			161	
32	Food plant sanitation and waste disposal, In-	4	_	345-	
	place cleaning	-		382	

Practical Exercise

No.	Title	
1.	Proximate analysis of food	
2.	Numerical on material and energy balance	
3.	Study of cream separator	
4.	Study of butter churner	
5.	Study of HTST & UHT pasteurizer	
6.	Study of homogenizers	
7.	Study of evaporators and numerical	
8.	Estimation of freezing time &Numerical on freezing time	
9.	Study of drying/ dehydration equipments	
10.	Study freeze dryer	

11.	Study of spray dryers
12.	Study of food processing plant design and layout
13.	Utilities and estimation of steam requirement for dairy food processing plant
14.	Study of flow process chart
15.	Visit to Commercial Dairy Processing Plant
16.	Visit to Food Processing Industries

Suggested Readings

Text Books

No.	Author	Title & Year	Publisher
1	Farall A.W.	Engineering for dairy and food products	Robert E.Krieger publishing company
2	Farall A.W	Food engineering system Vol.I	AVI publishing Co. INC Connecticut
3	Earle, R. L.	Unit operations in Food processing.	Pergamon Press, New York. USA
4	J.G.Brennan	Food engineering operation	Applied science publisher Ltd, London
5	Girdharilal & Siddappa	Preservation of fruits and vegetables	ICAR, New Delhi
6.	Sukumar De	Outline of Dairy Technology	Oxford University Press

Reference Book

1	R.M. Toledo	Fundamentals of Food Process Engineering : 1991 (2 nd edition)	Van Nostrand Reinhold, New York
2	Kessler V.A	Food Engineering and Dairy Technology	Freizing, Germany
3	W McCabe, J.G. Smith and P. Hamiot	Unit operations in Chemical Engineering (5 th edition) 1993	McGraw hill Book Co. Inc., Singapore
4	Tufal Ahmed	Dairy Plant System Engineering	KitabMahal 15, Thorn Hill Road, Allahabad
5	Charm S.E.	The Fundamentals of Food Engineering	AVI Publishers
6	Heldman, D.R.	Food Process Engineering	AVI Publisher
7	Harper	Elements of Food Engineering	AVI Publisher

Syllabus:

Theory:

Energy consumption pattern & energy resources in India. Renewable energy options, potential and utilization. Biogas technology and mechanisms, generation of power from biogas, Power generation from urban, municipal and industrial waste. Design & use of different commercial sized biogas plant. Solar thermal and photovoltaic Systems for power generation. Central receiver (Chimney) and distributed type solar power plant, OTEC, MHD, hydrogen and fuel cell technology. Wind farms. Aero-generators. Wind power generation system. Power generation from biomass (gasification & Dendro thermal), Mini and micro small hydel plants. Fuel cells and its associated parameters.

Practical:

Performance evaluation of solar water heater; Performance evaluation of solar cooker; Characteristics of solar photovoltaic panel; evaluation of solar air heater/dryer; Performance evaluation of biomass gasifier engine system (throatless & downdraft), Performance evaluation of a fixed dome type biogas plant; Performance evaluation of floating drum type biogas plant; Estimation of calorific value of biogas & producer gas; Testing of diesel engine operation using dual fuel and gas alone.

Lec. No	Торіс	Text	Chap	Article No	Page No
		Book	No		
		No.			
1-2	Energy consumption pattern & energy				
	resources in India. Energy sources & availability Introduction, Energy global scenario	02	01	1.4.1,	1-11
	Status of energy utilization, Non con. sources, classification, Renewable energy sources				
3-5	Biogas technology and				
	generation of power from biogas. Conditions for optimum production. Raw material for biogas	06 06	02 02	2.3 2.4, 2.5	13-24 25-31
	Mechanical conversion of biogas	06	07	7.1 to 7.8	104-112
6-8	Power generation from urban, and industrial waste.	06	09	9.1 to9.4	124-141
9-11	Design & use of different commercial biogasplant.	06 02	03 07	3.5 7.15	48-51 366-375

Teaching Schedule:

12-14	Solar thermal systems for				
	generation.				
	Introduction of solar thermal systems	02	05	5.5	168-178
	Thermal electric conversion system				
	Low, medium & High temp. system.				
	Central receiver (Chimney) and				
	type solar power plant.				
15-17	Solar Photovoltaic Power generation				
	Introduction, conversion efficiency	03	08	8.9,8.10,8.11,	165-170
	power output, power generation				
	design of sp ^y system for power			8.14	177-182
	type of systems and components, design				
	sp ^y system for water pumping				
18-19	Ocean Thermal Energy Conversion	03	15	15.2, 15.3,	310-316
				15.4	
20-21	Hydrogen technology	02	11		
	Introduction				609-612
	Production method(Enlist)				613
	Storage				637-641
22-23	Wind farms. Aero-generators.	02	06	6.2.2, 6.3	230-292
	The power in wind, wind data &			6.8.3,	
	Basic components & design			6.8.4,	
	Performance of wind machines.				
24-25	Wind power generation system.	02	06	6.11	292-298
26-28	Power generation from				
	(Gasification & Dendro thermal)				
	Types of gasifier, reaction chemistry,	05	03	3.4 to 3.7	52-61
	of fuel, applications.				
	Design of gasifier system, Performance	05	04	4.1 to	64-87
	gasfier and testing parameters.				
29-30	Mini and micro small hydel plants	02	09	9.5.1, 9.5.4,	541-556
	Introduction, nature and classification			9.5.7,	
	SHD, components, Turbine and				
	advantages and disadvantages				
31-32	Fuel Cell and its associated				
	Fuel cell, Classification,	03	17	17.1 to	336-347
	efficiency				

Practical Exercises:

Sr. No.	Title of Practicals
1	Performance evaluation of solar water heater (FPC/ETC)
2	Performance evaluation of solar cooker (BTSC/PSC)
3	VI-power Characteristics of solar photovoltaic panel
4	Evaluation of solar air heater/dryer (Direct type/Indirect type)
5	Performance evaluation of solar-wind hybrid system
6	Performance evaluation of biomass gasifier engine system (downdraft)
7	Performance evaluation of a fixed dome type biogas plant
8	Performance evaluation of floating drum type biogas plant
9	Estimation of calorific value of biogas
10	Estimation of calorific value of producer gas
11	Testing of diesel engine operation using dual fuel and gas alone

Suggested readings

Text Book:

- Garg H.P. and J. Prakash 2000. Solar Energy Fundamentals and Applications. 1St Revised Edition. Tata Mcgraw-Hill, New Delhi
- 2. Rai, G.D. 2013. Non-Conventional Energy Sources, Khanna Publishers, Delhi.
- 3. Rathore N. S., Kurchania A. K. & N.L. Panwar. 2007. Non Conventional Energy Sources, Himanshu Publications.
- 4. Khandelwal, K.C. & S.S. Mandi. 1990. Biogas Technology.
- 5. N.S.Rathore, N.L.Panwar and S. Kothari. Biomass Production and Utilization Technology, Himnashu Pub. Udaipur
- 6. Mathur, A.N. & N.S. Rathore. 1992. Biogas Production Management & Utilization. Himanshu Publications, Udaipur.

Reference Books:

- 1. Alan L: Farredbruch & R.H. Buse. 1983. Fundamentals of Solar Academic Press, London.
- 2. Bansal N.K., Kleemann M. & Meliss Michael. 1990. Renewable Energy Sources & Conversion Technology; Tata Mecgrow Publishing Company, New Delhi.
- 3. Mathur A.N. & N.S. Rathore. Renewable Energy Sources Bohra Ganesh Publications, Udaipur.
- 4. S.Rao and B.B.Parulekar.Energy Technology, Third Revised Edition.Khanna Publication, New Delhi

5. RK.Prasad and T.P. Ojha, Non Conventional Energy Sources, Jain Brothers

Course No. FS-355

Course Title :- Agricultural Structures, Storage Engineering and Environmental Control

Semester:- V Credits:- 3(2+1)

Syllabus

Theory

Planning and layout of farmstead. Scope, importance and need for environmental control, physiological reaction of livestock environmental factors, environmental control systems and their design, control of temperature, humidity and other air constituents by ventilation and other methods, Livestock production facilities, BIS Standards for dairy, piggery, poultry and other farm structures. Design, construction and cost estimation of farm structures; animal shelters, compost pit, fodder silo, fencing and implement sheds, barn for cows, buffalo, poultry, etc. Storage of grains, Causes of spoilage, Water activity for low and high moisture food and its limits for storage, Moisture and temperature changes in grain bins; Traditional storage structures and their improvements, Improved storage structures (CAP, hermetic storage, Pusa bin, RCC ring bins), Design consideration for grain storage godowns, Bag storage structures, Shallow and Deep bin, Calculation of pressure in bins, Storage of seeds. Rural living and development, rural roads, their construction cost and repair and maintenance. Sources of water supply, norms of water supply for human being and animals, drinking water standards and water treatment suitable to rural community. Site and orientation of building in regard to sanitation, community sanitation system; sewage system and its design, cost and maintenance, design of septic tank for small family. Estimation of domestic power requirement, source of power supply and electrification of rural housing.

Practical

Measurements for environmental parameters and cooling load of a farm building, Design and layout of a dairy farm, Design and layout of a poultry house, Design and layout of a goat house/sheep house, Design of a farm fencing system, Design of a feed/fodder storage structures, Design of grain storage structures, Design and layout of commercial bag and bulk storage facilities, Study and performance evaluation of different domestic structures.

Lect.	Торіс	Book	Article	Page No.	Weightage
No.		No.	No.		
1	Farmstead planning- introduction,		-	568 to 572	25%
	location, size and arrangement. Defects in				
	traditional houses				
2	Improved farm house design.	1	-	572 to 576	
3-4	Dairy barn- types and equipments.	1	-	606 to 613	
5	Milking center- milking parlour and milk	2	-	546 to 550	
	room				
6	Types of poultry houses	1	12.8	617 to 623	
9-10	Housing for pullet rearing and boiler	2	-	579-584	25%
	production, site selection and building				
	design, environmental control, brooder				
	and growing house operation, laying				
	house operation, lighting and				

Teaching schedule theory with weightages(%)

	miscellaneous features.				
11	Sheep housing	1	-	627 to 630	
12-13	Hay, grain and silage storage.	2	-	447 to 461	-
14-15	Causes of spoilage, water activity for low	1			
	and high moisture food				
16-17	Feed storage, existing grain storage	1	13.4 to	661 to 674	
	methods, Requirements of good storage		13.10		
	structures, bag storage structures;				
	indigenous storage structures – Bukhari,				
	Morai and Kothar; CAP, hermetic				
	storage, Grain bins – cylindrical,				
	rectangular and Pusa bin.				
18-19	Moisture and temperature changes in	1			25%
	grain bin, Shallow and deep bin,				
20	calculation of pressure in bins			500 501	-
20	Farm Machinery storage structures	1	-	700 to 701	-
21-22	Fencing types, farm gates, fencing post.	1	-	590-599	-
23-25	Sources of water supply (in brief);	3	3.7 to	46 to 54,	
	Standard of quality of water and		3.10,	176 to 178,	
	bacteriological standards; Water		6.19 to	290 to 293	
	treatment process – impurities in water,		6.20,	and 437 to	
	objects of treatment, treatment process;		11.1 to	442	
	Disinfection of rural water supplies.		11.4 and		
26.27	Developmitation has be later as	3	18.6	430 to 437	250/
26-27	Rural sanitation – heads, latrines or	3	25.1 to		25%
	privies; Septic tanks- domestic and municipal,		25.3, 22.1 to	and 387 to 392	
	design of septic tank.		22.1 10	392	
28-29	Effects of thermal and gaseous	4	22.3	121 to 156	-
20-29	environmental on livestock - Introduction,	4	-	121 10 130	
	homoeothermy, energy balance and				
	effects of temperature, humidity, air				
	velocity and air contaminants.				
30-31	Quantity of air flow for livestock	4		169 to 190	
50 51	ventilation – fundamental equations,				
	moisture balance, selection of values, and				
	problems on minimum, medium and				
	maximum ventilation rate.				
	mannan vontinuton futo.				

List of practicals:

- 1 Study of different instruments for measurement of environmental parameters.
- 2 Problems on quantity of air flow for livestock ventilation.
- 3 Planning and layout of dairy buildings.
- 4 Planning and layout of poultry buildings.
- 5 Planning and layout of sheep / goat house.
- 6 Design of farm fencing system.
- 7 Design of pit silo for fodder storage.
- 8 Design of trench silo for fodder storage.
- 9 Design of bag storage structure.
- 10 Planning and layout of implement shed.
- 11 Visit report on local dairy / poultry site.

List of Books:

- 1. Principles of Agricultural Engineering Volume-I, by T.P. Ojha and A.M. Michael, Jain Brothers, New Delhi-110005 (Fourth edition, 2003)
- Agricultural Buildings and Structures, by James A. Lindley and James H. Whitakar, The Society for Engineering in Agricultural, Food and Biological Systems (ASAE), USA. Revised Edition of 1996.
- 3. Water Supply and Sanitary Engineering, by Gurucharan Singh, Standard Publishers Distributors, Delhi. (Fifth Edition, 1999).
- 4. Ventilation of Agricultural Structures, by Mylo A Hellickson and John N. Walker, An ASAE monograph number 6 in a series published by ASAE, USA (1983).

Reference Books:

- 1. Pandey, P.H. Principles and practices of Agricultural Structures and Environmental Control, Kalyani Publishers, Ludhiana.
- 2. Ojha, T.P and Michael, A.M. Principles of Agricultural Engineering, Vol. I, Jain Brothers, Karol Bag, New Delhi.
- 3. Nathonson, J.A. Basic Environmental Technology, Prentice Hall of India, New Delhi.
- 4. Venugopal Rao, P. Text Book of Environmental Engineering, Prentice Hall of India, New Delhi.
- 5. Garg, S.K. Water Supply Engineering, Khanna Publishers, New Delhi-6.
- 6. Dutta, B.N. Estimating and Costing in Civil Engineering, Dutta & CO, Lucknow.
- 7. Khanna, P.N. Indian Practical Civil Engineer's Hand Book, Engineer's Publishers, New Delhi.
- 8. Banerjee, G.C. A Text Book of Animal Husbandry, Oxford IBH Publishing Co, New Delhi.

SEMESTER : VI

Course No. : FMPE-3611

Sem:-VI

Title: Farm Machinery and Equipment-II

Credits: 2(1+1)

Syllabus:

Theory

Introduction to plant protection equipment - sprayers and dusters. Classification of sprayers and sprays. Types of nozzles. Calculations for calibration of sprayers and chemical application rates. Introduction to interculture equipment. Use of weeders - manual and powered. Study of functional requirements of weeders and main components. Familiarization of fertilizer application equipment. Study of harvesting operation – harvesting methods, harvesting terminology. Study of mowers – types, constructional details, working and adjustments. Study of shear type harvesting devices cutter bar, inertial forces, counter balancing, terminology, cutting pattern. Study of reapers, binders and windrowers - principle of operation and constructional details. Importance of hay conditioning, methods of hay conditioning, and calculation of moisture content of hay. Introduction to threshing systems - manual and mechanical systems. Types of threshing drums and their applications. Types of threshers- tangential and axial, their constructional details and cleaning systems. Study of factors affecting thresher performance. Study of grain combines, combine terminology, classification of grain combines, study of material flow in combines. Computation of combine losses, study of combine troubles and troubleshooting. Study of chaff cutters and capacity calculations. Study of straw combines - working principle and constructional details. Study of root crop diggers - principle of operation, blade adjustment and approach angle, and calculation of material handled. Study of potato and groundnut diggers. Study of Cotton harvesting - Cotton harvesting mechanisms, study of cotton pickers and strippers, functional components. Study of maize harvesting combines. Introduction to vegetables and fruit harvesting equipment and tools.

Practical:

Familiarization with various Farm machines related to harvesting, threshing, root. harvesting, combine etc; Study of various types of mowers, constructional details, materials and working; Study of various types of reaper, constructional details, materials and working & performance; Study of various types of potato harvesters, constructional details, materials and working; Study of various types of groundnut harvesters, constructional details, materials and working & performance; Study of various types of forage harvester, constructional details, materials and working; Study of various types of sugarcane harvester, constructional details, materials and working; Study of various types of sugarcane harvester, constructional details, materials and working; Study of various types of maize sheller, constructional details, materials and working & performance; Study of various types of cotton pickers and strippers, constructional details, materials and working; Study of various types of various types of harvester tools, constructional details, materials and working; Study of various types of straw combines, constructional details, materials and working; Study of various types of cotton pickers and strippers, constructional details, materials and working; Study of various types of combine harvester, constructional details, materials and working; Study of various types of combine harvester, constructional details, materials and working; Study of various types of combine harvester, constructional details, materials and working; Study of various types of combine harvester, constructional details, materials and working; Study of various types of straw combines, constructional details, materials and working; Study of various types of straw combines, constructional details, materials and working; Study of various types of further tools, constructional details, materials and working; Study of various types of straw combines, constructional details, materials and working; Study of various types of fures types of straw combines

Teaching schedule- Theory with weightages (%)

Lecture No	Topic	Book No.	Chapter, Art. No.	Page No.
1.2	Plant protection equipment- Sprayers and duster their calibration selection. Constructional features of different components and adjustments.	5	6.1-6.5	114-135
3	Principle and types of cutting mechanisms	7	14.3-14.10	315-321
4 - 9	Crop harvesting machinery: Harvesting and threshing equipments	5	4.1,4.2, 17 17.9-17.14,	71-85
	Threshing mechanics.	7	33	400-409 438-450
	Combine harvester: components, functions and flow chart, grain losses	4	6.13	453-454
	Sugarcane harvester: components, functions and flow chart	4	33	460-461
10 - 11	Forage chopping and handling equipment	7	16.1-16.7 16.15-16.16	368-374 383-384
	Chaff cutter	1	18.1	371-376
12	Root crop harvesting equipment: components, functions and flow chart of Potato harvester and Peanut harvester.	42	33	462-463 372-376
13,14	Cotton harvesting machinery: components, functions and flow chart	7	19.1-19.10	446-455
15	Testing of farm machines test code procedures, interpretation of test results	8	1	2-15
16	Selection of tractor and matching implements	5	Annex-I	219-228

Teaching schedule- Theory with weightages (%)

Lecture No	Торіс	Weightages	
		%	
Ι	Plant protection equipment- Sprayers and duster their calibration	20	
	selection. Constructional features of different components and		
	adjustments.		
II	Principle and types of cutting mechanisms	35	
	Crop harvesting machinery:		
	Harvesting and threshing equipments		
	Threshing mechanics.		
III	Combine harvester, grain losses	35	
	Sugarcane harvester		
	Forage chopping and handling equipment		
	Chaff cutter		
	Root crop harvesting equipment		
	Potato harvesting		
	Peanut harvesting		
	Cotton harvesting machinery		
IV	Testing of farm machines test code procedures	10	
	Selection of tractor and matching implements		

Practical Exercises

Exercises No.	Topics
1	To study different types of pesticides application equipments
2	To study different types of spray nozzles
3	To study different types of dusters
4	Study of various types of movers, constructional details, materials and working
5	Study of various types of repairs, constructional details, materials and working
6	Study of grain crop combine harvesters constructional details, materials and working
7-8	To study different types of threshers constructional details, materials and working and performance
9	Study of maize sheller
10	Study of sugarcane harvester
11	Study of chaff cutter
12	Study of Potato harvester
13	Study of Peanut harvester
14	Study of cotton harvesting machinery
15	Study of various types of fruits harvesting equipments, constructional details, materials and working
16	Study of various types of forage harvesters, constructional details, materials and working

Suggested readings

Text Books

- 01 Elements of Agril. Engineering by Dr. Jagdiswar sahay.
- 02 Farm machinery and Equipment by Smith and Wikes, TMH Publ.(1984 edition)
- 03 Elements of Farm Machinery by A.C. Shrivastav (1990 edition)
- 04 Farm Machinery & Equipment by CP Nakra, Dhankpat Rai & Sons Edition 1990
- 05 Farm machinery and approach by S. C. Jain, Grace Philip
- 06 Practical Farm Machinery Vol.2 By Bhattacharya, Saroj Prakashan, 1999 Ed.
- 07 Principles of Farm Machinery by Kepner, Bainer and Barger, CBS Publishers and Distributer, Delhi (1987) Indian Edition.
- 08 RNAM Test Codes and Procedures for Farm Machinery.

Course No:- FMPE 3612

Semester:-VI

Title :-Tractor and farm machinery design

Credit- 3 (2 + 1)

Syllabus

Theory:-

Design of power transmission components and system in agril. Machines, Design paramaters of agril. Implements, Force analysis of primary tillage tools and their hitching systems. Considerations of Reapers, Mowers, Harvesters and threshing equipments. Application of design method to the system of selected farm machinery, cost estimation of designed machinery. Procedure for design and development of agricultural tractor. Design of Ackerman Steering and tractor hydraulic systems. Study of special design features of tractor engines and Design of seat and controls of an agricultural tractor.

Practical:

Problems on Power transmission, Design consideration of seed drills/planters, inter culture tools, reaper/mower/harvester and thresher. Application of computer aided design methods of the selected farm machinery. Design problems of tractor engine & power transmission.

Sr. No.	Lect. No.	Topic	Book No.	Chapter No.
1.	1-4	Procedure for design of tractor engine parts: cylinder, cylinder head, piston, ring, Crank shaft, valve, connecting rod etc.	6	1.3 (complete)
2.	5-7	Lubrication system and cooling system of tractor	6	5.1-5.5 6.1- 6.6
3.	8-10	Design of tractor hydraulic systems: hydraulic cylinder, pump	6	9.1-9.5
4.	11-12	Design of seat and controls of an agricultural tractor	6	12.4.3-12.4.5
5.	13-17	Study of parameters for balanced design of tractor for stability & weight distribution	2	Chapter-11
6.	18-19	Theoretical Design of power transmission components in Agril. Machinery- Clutches	3	24 (24.9 to 24.11)
7.	20	Design considerations of Agricultural Implements	6	1
8.	21-24	Design of tillage tool	5	4.1-4.5
9.	25-27	Design of sowing and planting machines	5	5.1 to 5.2
10.	28	Design of intercultural tools and implements	5	6.1

Lesson Plan- Theory with weightages (%)

11.	29-30	Design of sprayers	4	Chapter 17 complete
12.	31-32	Design of harvester & Threshing machines	5	7.1 to 7.2
				8.1 to 8.2

Lesson Plan- with weightages (%)

Unit	Lect.	Торіс	Weigtage,
No.	No.		%
Ι	1-4	Procedure for design of tractor engine parts:	20
		cylinder, cylinder head, piston, ring, Crank shaft,	
		valve, connecting rod etc.	
	18-19	Theoretical Design of power transmission	
		components in Agril. Machinery- Clutches	
II	5-7	Lubrication system and cooling system of tractor	20
	8-10	Design of tractor hydraulic systems: hydraulic	
		cylinder, pump	
III	11-12	Design of seat and controls of an agricultural	20
		tractor	
	13-17	Study of parameters for balanced design of	
		tractor for stability & weight distribution	
IV	20	Design considerations of Agricultural	20
		Implements	
	21-24	Design of tillage tool	
	25-27	Design of sowing and planting machines	
V	28	Design of intercultural tools and implements	20
	29-30	Design of sprayers	
	31-32	Design of harvester & Threshing machines	

Practical Exercises

1 to 16 : Numerical on design of tractor and farm machinery as per theory lesson plan.

Text Books:

- 1. Engineering material science By-Cedric W. Rechards, Prentice- Hall of INDIA (PVT) Ltd (1965)
- 2. Design of agricultural Machinery By- Gary Krutzs&others, Johnwiley& sons
- 3. A text Book of Machine Design By-R.S. Khurmi& J.K. Gupta
- 4. Agricultural machines by klenin&popov
- 5. Farm Machinery Design : principal & problem ,Sharma D.N. &Mukesh S. Published by Jain Brothers
- 6. Design of Agril. Tractor principles & problems- D.N.Sharma, S.Mukesh-Jain Publication
- 7. Theroy ,construction and calculations of Agril.MachinesVol.I by E.S.Bosaietloxoninan press pvt.ltd new delhi

Ref. Books:

- 1) The Mechanics of Tractor- Implement Performance *Theory and Worked Examples* R.H. Macmillan
- 2) ASAE Distiguished lecture series on Tractor Design
- 3) Machine Design- Pandya& Shah, R.S. Khurmi

Course No. : SWCE-366

Course Title: Watershed Planning and Management

Semester - VI

Credits : 2 (1+1)

Syllabus

Theory

Watershed - introduction and characteristics. Watershed development - problems and prospects, investigation, topographical survey, soil characteristics, vegetative cover, present land use practices and socio-economic factors. Watershed management - concept, objectives, factors affecting, watershed planning based on land capability classes, hydrologic data for watershed planning, watershed codification, delineation and prioritization of watersheds – sediment yield index. Water budgeting in a watershed. Management measures - rainwater conservation technologies - *in-situ* and *ex-situ* storage, water harvesting and recycling. Dry farming techniques - inter-terrace and inter-bund land management. Integrated watershed management - concept, components, arable lands - agriculture and horticulture, non-arable lands - forestry, fishery and animal husbandry. Effect of cropping systems, land management and cultural practices on watershed hydrology. Watershed programme - execution, follow-up practices, maintenance, monitoring and evaluation. Participatory watershed management - role of watershed associations, user groups and self-help groups. Planning and formulation of project proposal for watershed management programme including cost-benefit analysis.

Practical

Exercises on delineation of watersheds using toposheets. Surveying and preparation of watershed map. Quantitative analysis of watershed characteristics and parameters. Watershed investigations for planning and development. Analysis of hydrologic data for planning watershed management. Water budgeting of watersheds. Prioritization of watersheds based on sediment yield index. Study of functional requirement of watershed development structures. Study of watershed management technologies. Practice on softwares for analysis of hydrologic parameters of watershed. Study of role of various functionaries in watershed development programmes. Techno-economic viability analysis of watershed projects. Visit to watershed development project areas.

Lect. No.	Торіс	Book No.	Pages	Article No.	Weightage s (%)
1	Watershed - introduction and characteristics.	1, 2, 6	267-271 785-793, 99 to 103	24.1-24.2	
2, 3	Watershed development-problems and prospects, investigation, topographical survey, soil characteristics, vegetative cover, Present land use practices and socio- economic factors.	3, 4	7-8 11-17 20 to 26	1.10 2.1-2.2 2.4-2.5	30
4	Watershed management - concept, objectives, factors affecting, Integrated watershed management - concept, components	3, 2, 7	4 to 8, 714, 823- 824 1 to 5	1.4 to 1.10 24.8.1, 24.11	-
5	Watershed planning based on land capability classes,	4	161 to 164		
6	Hydrologic data for watershed planning, Water budgeting in a watershed.	5, 6	516 to 525, 89 to 91	15.1-15.2	
7	Watershed codification, delineation and prioritization of watersheds – sediment yield index.	2	793 to 798	24.4 to 24.6	30
8	Management measures - rainwater conservation technologies - <i>in-situ</i> and <i>ex-situ</i> storage,	7	11 to 19		
9	Water harvesting and recycling.	7	56 to 60		
10	Dry farming techniques - inter-terrace and inter-bund land management.	8	192 to 197	8.2.1 - 8.2.3	
11	Arable lands - agriculture and horticulture, Non-arable lands - forestry, fishery and animal husbandry.	4	164 to 178		20
12	Effect of cropping systems, land management and cultural practices on watershed hydrology.	8	233 to 240	9.1	
13	Watershed programme - execution, follow-up practices, maintenance, monitoring and evaluation.	5, 3	505-510 569, 572-576	14.10 24.1 24.2	
14	Participatory watershed management - role of watershed associations, user groups and self- help groups.	3	531 to 535 538 to 544	21.1 to 21.4 21.6 to 21.7	20
15, 16	Planning and formulation of project proposal for watershed management programme including cost-benefit analysis.	2, 9	815 to 823 146 to 148	24.9 to 24.10	

Teaching Schedule- Theory with weightages (%)

Practical Exercises

Exercise	Title
No.	
1-2	Surveying and preparation of watershed map.
3-4	Grid survey of watershed area.
5	Preparation of contour map and delineation of watershed.
6	Delineation of watersheds using top sheets.
7	Quantitative analysis of Geo-morphological characteristics of watershed.
8	Analysis of hydrologic data for planning of watershed development.
9	Water budgeting of watersheds.
10	Prioritization of watersheds based on sediment yield index.
11	Watershed planning and development.
12	Study of watershed management technologies.
13-14	Practice on software's for analysis of hydrologic parameters of watershed.
15-16	Visit to watershed development project

Suggested readings

Text Books

- 1. Soil Conservation and Land Management. S. K. Datta, International Book Distributors, Dehradun, 1985
- 2. Soil and Water Conservation Engg. R. Suresh, Standard Publishers Distributors, Delhi-6, Reprint Edition 2006
- 3. Watershed Planning and Management. Rajvir Singh. Yash Publishing House, Bikaner. 2000
- 4. Field Manual on Watershed Management. 2013. B. Venkateswarlu, Mohammed Osman, M.V. Padmanabhan, K. Kareemulla, P.K. Mishra, G.R. Korwar& K.V. Rao, CRIDA, Hyderabad
- 5. Hydrology and Soil Conservation Engineering : Including Watershed Management. Ghanshyam Das, 2008. Prentice-Hall of India Learning Pvt. Ltd., New Delhi.
- 6. Hydrology. H. N. Raghunath. New Age International Publishers, 2004 reprint.
- 7. Watershed Management. V.V. DhruvaNarayana G. Sastry& U.S. Patnaik. ICAR, New Delhi, 1997
- 8. Watershed Management: Guidelines for Indian Conditions. Tideman, E.M., Omega Scientific Publishers, New Delhi. 1996
- 9. Watershed Management: Design and Practice. P. K. Singh, 2000. E-media Publications, Udaipur.

Reference Books

- 1. Katyal, J.C., R.P. Singh, Shriniwas Sharma, S.K. Das, M.V. Padmanabhan and P.K. Mishra. 1995. Field Manual on Watershed Management. CRIDA, Hyderabad.
- 2. Mahnot, S.C. 2014. Soil and Water Conservation and Watershed Management. International Books and Periodicals Supply Service. New Delhi.
- 3. Sharda, V.N., A.K. Sikka and G.P. Juyal. 2006. Participatory Integrated Watershed Management: A Field Manual. Central Soil and Water Conservation Research and Training Institute, Dehradun.
- 4. Singh, G.D. and T.C. Poonia. 2003. Fundamentals of Watershed Management Technology. Yash Publishing House, Bikaner.

Course No:- IDE-365

Credit- 2=1+1

Title :- CANAL IRRIGATION MANAGEMENT Semester:-VI

Syllabus:

Theory:

Description of components of irrigation canal system, their functions, planning and layout of canal irrigation system, preliminary design procedure for irrigation project, crop water requirement, duty and delta, specific discharge of canal, design of canal by Kennedy and Lacey's theory and tractive force approach, Canal seepage and lining of canal, design of lined canal and economics.

Diversion head works and canal head regulators, theories of seepage, cross drainage works, canal falls, irrigation structures on distributory and minor, regulator and modules, maintenance of canal.

Practical:

Irrigation water requirement of crops based on duty, delta concept, Design of canal by Kennedy's and Lacey's theory, Design of lined irrigation canal, Planning and layout of water conveyance system, Study of canal outlets, Study of straight Glacis fall, Study of aqueduct, Conjunctive water use planning, Study of irrigation distribution schedule (Warabandi and Shejpali), Visit to canal irrigation projects.

Teaching Schedule:

Lecture No.	g Schedule: Topic	Article no.	Page no.	Book	Weightage, (%)
Unit I					
1	Introduction to irrigation		xx-xxi	1	20
	development and status				
	Components of irrigation canal				
	system:				
	Planning and layout of canal	3.1	63-66	1	
	irrigation system	3.2			
		3.3			
	Distribution system for canal	3.4	66-68	1	
	irrigation				
2-3	Preliminary design procedure for	12.2 -12.6	251 - 255	2	
	irrigation project				
	Diversion head works:				
	Weir and barrage, gravity and non	9.1	600-608	1	
	gravity weirs, layout of a diversion	9.2			
	head works and components, certain	9.3.1			
	important definitions	9.3.2			
		9.3.3			
	Fish ladder	9.3.6	612-615		
	Canal head regulators	9.3.7	615-621		
	Silt control devices	9.3.8	622-623		
Unit II					•
4	Crop water requirement:	2.1	25-31	1	40
	Introduction, crop period and base	2.2	32-35		
	period, duty and delta of a crop,	2.3			
	certain important definitions	2.5			
5	Specific discharge of canal:			1	
	Certain important definitions,	3.6	69-70		
	Determination of required channel	3.7	70-84		
	capacity				
6,7	Design of canal:				
~ 7 -	i. Tractive force approach		00.01		
	ii. Kennedy's theory	4.1 - 4.4	90 -94	1	
	iii. Lacey's theory	4.7.3	108 -116	1	
	Comparison of Kennedy's and	4.7.4	116 – 122	1	
	Lacey's theory	4.7.5	122-123	1	
8	Canal seepage:				
3	Causes of failure,	11.1	643-647	1	
	Blight's creep theory,	11.2		-	
	Lane's weighted creep theory	11.2			
9	Lining of canal:				
,	Advantages of lining, financial	5.1	184- 194	1	
	justification & economics of canal	5.2		-	
	lining	5.3			
	6	0.0			
10,11	Design of lined irrigation channel	5.5	195 - 200	1	1
10,11		5.6	175 200	I	

Unit III					
12	Cross drainage works:				30
	Types of cross drainage works,	14.1	841-848	1	
	selection of drainage work,	14.2			
	Types of cross drainage works	14.3			
13	Canal falls:	12.1	734-744	1	
	Definition, location, types of falls	12.2			
14	Canal regulator:				
	Canal regulator works, alignment of	13.1	797-800	1	
	the off-taking channel,	13.2			
	Distributary head regulator and cross	13.3			
	regulator	13.4			
15	Canal outlet or modules:				
	Requirements of good modules,	13.8	817 - 836	1	
	types of modules. Criteria for	13.9			
	judging the performance of modules,	13.10			
	certain important definitions	13.11			
	_	13.12			
		13.13			
		13.14			
Unit IV			·		
16	Maintenance of irrigation canal	4.13	175-179	1	10

Practicals:

- 1-2. Irrigation water requirement of crops based on duty, delta concept
- 3-4. Design of canal by Kennedy's and Lacey's theory
- 5-6. Design of lined irrigation canal
- 7-8. Planning and layout of water conveyance system
- 9. Study of canal outlets
- 10-11. Study of straight Glacis fall
- 12. Study of aqueduct
- 13. Conjunctive water use planning
- 14. Study of irrigation distribution schedule (Warabandi and Shejpali)
- 15-16. Visit to canal irrigation projects

Suggested readings

Text books

Sl.	Title	Author	Publisher
1	Irrigation Engineering and Hydraulic	Santosh Kumar Garg	Khanna Publishers,
	Structures (12 th Revised ed ⁿ)		New Delhi
2	Irrigation Engineering and Hydraulic	S.R. Sahastrabudhe	
	structures		

Reference books

SI.	Title	Author	Publisher
3	Irrigation Theory and Practice	A.M.	Vikas Publishing house Pvt.
		Michael	Ltd, New Delhi
4.	Operation and management of irrigation system in Maharashtra State, Second Edition, Pub No. 20	-	WALMI Publications, Aurangabad
5	Water distribution practices in Maharashtra State, Pub No. 22	-	WALMI Publications, Aurangabad

Course No. : IDE 366 Sem:-VI **Title:** Sprinkler and Micro irrigation Systems Credits: 2(1+1)

Syllabus:

Theory:

Sprinkler irrigation: adaptability, problems and prospects, types of sprinkler irrigation systems; design of sprinkler irrigation system: layout selection, hydraulic design of lateral, sub-main and main pipe line, design steps; selection of pump and power unit for sprinkler irrigation system; performance evaluation of sprinkler irrigation system: uniformity coefficient and pattern efficiency;

Micro Irrigation Systems: types-drip, spray, & bubbler systems, merits and demerits, different components; Design of drip irrigation system: general considerations, wetting patters, irrigation requirement, emitter selection, hydraulics of drip irrigation system, design steps; necessary steps for proper operation of a drip irrigation system; maintenance of micro irrigation system: clogging problems, filter cleaning, flushing and chemical treatment; fertigation: advantages and limitations of fertigation, fertilizers solubility and their compatibility, precautions for successful fertigation system, fertigation frequency, duration and injection rate, methods of fertigation.

Practical:

Study of different components of sprinkler irrigation system, Design and installation of sprinkler irrigation system, Determination of precipitation pattern, discharge and uniformity coefficient, Cost economics of sprinkler irrigation system, Study of different components of drip irrigation, Design and installation of drip irrigation system, Determination of pressure discharge relationship and emission uniformity for given emitter, Study of different types of filters and determination of filtration efficiency, Determination of rate of injection and calibration for chemigation/fertigation, Design of irrigation and fertigation schedule for crops, Field visit to micro irrigation system and evaluation of drip system, Cost economics of drip irrigation system.

Lecture No.	g Schedule: Topics	Article	Page no.	Book	Weightage, (%)
Unit I		no.			(70)
<u>1</u>	Sprinkler Irrigation:	3.6	578-581	2	20
1	Introduction, problems and prospects,	5.0	37-45	3	20
	adaptability, limitations, types of systems,				
	Components of the sprinkler system		581-585	2	
2	Uniformity and efficiency:		587-589	2	
	Moisture distribution patterns and uniformity of				
	coverage, uniformity coefficient				
Unit II					
3	Design of Sprinkler irrigation system:		589-593	2	25
	Inventory of resources, layout of sprinkler	3.7	45-48	3	
	system, sprinkler selection and spacing, capacity	5.7			
	of the sprinkler system				
4	Hydraulic design of sprinkler systems:	4.1 to 4.3	49-65	3	
	Discharge of sprinkler nozzle, pressure discharge				
	relationship, sprinkler head selection				
5	Design of sprinkler laterals, submains, main line	4.4, 4.5	65-71	3	
6	Pressure requirement and power units for	4.6-4.7	71-72	3	
	sprinkler system	4 0 4 10	73-90	3	
		4.9-4.10			
7	Operation and maintenance of sprinkler, cost	7	123-126	3	
	economics		595-596	2	
Unit III					
8	Micro irrigation:		1-9	1	30
	Introduction, merits/demerits,		12-18	1	
	types, components of drip system		611-616	2	
		1.3	5-6	4	
		2.4-2.5	15-21	4	
9	Design criteria for emitters	3.2	25-34	4	
10	Preliminary design factor for drip design		27-35	1	
	Estimation of water requirement and hydraulics	4.1 - 4.3	35-48	4	
	of drip irrigation system				
11	Emitter design and selection,		18-22	1	
	Design of lateral, submain, main and pump	4 4	48-67	4	
		4.4			
Unit IV					
12	Clogging and filtration	6	76-79	4	25
		11	130-139	4	
13	Maintenance and chemigation	7	80-92	4	
14	Fertigation	9	107-124	4	
15	Cost economics of drip system	4.6.1	67-68	4	
15	Evaluation of drip irrigation system				
	a subsection of one information by storin		be circula	ated)	
		8.1-8.2	93-103	4	
16	Automation in drip system	(Notes to	be circula	ated)	

Practicals:

- 1. Study of different components of sprinkler irrigation system.
- 2-3. Design and installation of sprinkler irrigation system.
- 4-5. Determination of precipitation pattern, discharge and uniformity coefficient.
- 6. Cost economics of sprinkler irrigation system.
- 7. Study of different components of drip irrigation.
- 8-9. Design and installation of drip irrigation system.
- 10-11. Determination of pressure discharge relationship and emission uniformity for given emitter.
- 12. Study of different types of filters and determination of filtration efficiency.
- 13. Determination of rate of injection and calibration for chemigation/fertigation.
- 14. Design of irrigation and fertigation schedule for crops.
- 15. Field visit to micro irrigation system and evaluation of drip system.
- 16. Cost economics of drip irrigation system.

Suggested readings

Text book

Sr. No.	Title	Author	Publication
1	Trickle Irrigation Design	Jack Keller and	Rain Bird Sprinkler
		David Karmeli	Manufacturing Co., Clendora,
			California, USA.
2	Irrigation: Theory and Practice,	Michael A.M.	Vikas Publishing Vikas Pub.
	Second Edition		House New Delhi
3	Principles of Sprinkler	Mane M.S. and	Jain Brothers, New Delhi
	Irrigation systems, Second	Ayare B.L	
	Edition		
4	Principles of Drip Irrigation	Mane M.S and	Jain Brothers, New Delhi
	Systems, Third Edition	Ayare B.L. and	
		Magar S.S.	

Reference books

5	Design and Evaluation of Irrigation	Michael AM,	Water Technology
	Methods, (IARI Monograph No.1)	Shrimohan and KR	Centre, IARI New Delhi
		Swaminathan	
6	Micro Irrigation for Cash Crops,	Choudhary M.L and	Westville Publishing
	2006	Kadam U.S	House
7.	Drip Fertigation for Higher Crop	Pawar D. D., Dingre	MPKV/Res. Pub. No.
	Productivity	S. K., Shinde M. G.	99/2013
		and Kaore S. V.	

Course No :	PFE 366	Course Title :
Semester:	VI	Credits:

Post Harvest Engineering of Horticultural Crops : 2 (1+1)

Syllabus

Theory

Importance of processing of fruits and vegetables, spices, condiments and flowers. Composition and nutritional value of horticultural crops. Maturation standards and indices, preparation of fruits and vegetables for fresh market. Post harvest handling operations. Cooling of horticultural produce, need changes, methods. Low temperatures and physiological disorders. Quality-components, factors influencing quality. Quality standards for fresh fruits and vegetables. Storage atmosphere-CO2, ethylene, micro-biological growth. Modified atmosphere during transport and storage. Cold Storages and control atmosphere storages. Storage deterioration - biological and environmental factors. Codex standards and ISO.

Practical

Study of maturity of selected fruits, study of physiological maturity of given fruits, study of wax coating, study of a ripening chambers, study of use of chemicals for ripening and enhancing shelf life of fruits and vegetables, study of respiration quotient, study of pre-cooling methods, study of commercial cold storage units, study of chilling injury of selected fruits, study of physiological disorders in fruits and vegetables, study of blanching of vegetables, visit to commercial fruits and vegetable processing plant and pack house.

Lectur	Торіс	Book	Page No	Weight
e.				age (%)
1	Importance of processing of fruits and	4	11-17	
	vegetables, spices, condiments			
2	Composition and Nutritional value of	2	17-26	15
	horticultural crops	4	337-354	
3	Maturity, Standards and Indices	1	39-44	
4	Ripening changes and regulation	1	31-38	
5-6	Post harvest handling operations for the	4	115-122	
	preparation of fruits and vegetables for market			
	(washing, cleaning, sorting, grading, sizing,			
	curing, blanching, waxing, packaging)			25
7	Pre-Cooling of horticultural produce—Need	2	153-156	
	and Methods (Room cooling, forced air			
	cooling and hydro cooling, icing, vacuum			
	cooling, ice bank cooler and evaporative			
	cooling)			
8	Chilling requirements of different fruits and	3	359-369	
	vegetables, Equipment for chilling, Effect on			
	food during chilling			
9	Peeling: Different peeling methods and devices	3	85-87	
	(manual peeling, mechanical peeling, chemical			
	peeling, and thermal peeling)			25

Lesson Plan Theory :

1.0				
10	Blanching: Importance and objectives;	3	201-208	
	blanching methods, effects on food (nutrition,			
	colour, pigment, texture)			
11	Cold storage – Modified, Controlled. Factors	3	369-372	
	affecting storage deterioration Cold chain	1	63-64	
	system			
12	Packaging of horticultural commodities,	3	421-423	
	Packaging requirements (in terms of light			
	transmittance, heat, moisture and gas proof,			
	micro organisms, mechanical strength).			
13	Different types of packaging materials	5	529-551	15
	commonly used for raw and processed fruits			
	and vegetables products bulk and retail			
	packages			
14	Transportation of fruits and vegetables (Truck,	2	132-136	
	Rail, water and air transport)			
15	Pack house technology	2	119-131	20
16	Quality- components, factors affecting quality,	1	25-30	
	quality standards of Fruit and vegetable.	2	341-344	
		2	349-378	

Practical Exercises

Ex. No.	Titles
1	Study of maturity indices of selected fruits
2	Study of maturity indices of selected vegetables
3	Study of peelers
4	Study of slicers
5	Study of fruits washer
6	Study of wax coating of fruits
7	Study of use of chemicals for ripening and enhancing shelf life of fruits and
	vegetables.
8	Study of pre-cooling methods
9	Study of commercial cold storage unit
10	Study of chilling injury of selected fruits
11	Study of blanching of vegetables
12	Preparation of value added products from fruits and vegetables
13	Flowcharts for preparation of different finished products
14	Study of CAP storage
15	Study of MAP storage
16	Visit to commercial fruit and vegetable processing plant and pack house

Suggested readings Recommended Text Books

No.	Author	Title & Year	Publisher
1	I.S. Singh	Post Harvest Handling and	Westville Publishing House
		Processing of fruits & vegetables	New Delhi
2	P. Suresh Kumar, V.	Post Harvest Physiology and	Agrotech Publishing Academy.
	R. Sagar, and M.	Quality Management of fruits	Udaipur, 313001
	Kanwat	and vegetables,	
3	by P. Fellows	Food Processing Technology,	Woodhead Publishing Ltd.,
		Principles & Practice	Cambridge, England (UK)
4	L. R. Verma and V.K.	Postharvest Technology of	Indus Publishing Co. New Delhi
	Joshi	Fruits and Vegetables (Vol I)	
5	L. R. Verma and V.K.	Postharvest Technology of	Indus Publishing Co. New Delhi
	Joshi	Fruits and Vegetables(Vol II)	
б.	R.P. Shrivastav	Post harvest management and	
		value Addition of fruits and	
		vegetables	

Reference Book

Ittlei	CIICC DOOK		
1	GirdhariLal, G.S.Siddappa and G.L.	Preservation of fruits and vegetables	ICAR Pub. New Delhi
	Tanden		
2	Arthey, D. and Ashurst, P. R.	Fruit Processing (1966)	Chapman and Hall, New York.
3	Pantastico, E.C.B.	Postharvest physiology, handling and utilization of tropical and subtropical fruits and vegetables (1975)	AVI Pub. Co., New Delhi.
4	Pandey, R.H.	Postharvest Technology of fruits and vegetables (Principles and practices) (1997)	Saroj Prakashan, Allahabad.
5	Sudheer, K P. and Indira, V.	Post Harvest Engineering of horticultural crops (2007)	New india Publishing House

Course No :	PFE 367	Course Title:	: Refrigeration and Air conditioning
Semester:	VI	Credits :	: 2 (1+1)

Syllabus Theory

Terminology & laws of thermodynamics applied to refrigeration, Principles of refrigeration, Units of refrigeration, Types of refrigeration systems. Mechanical vapour compression, Components of mechanical refrigeration system, Reverse Carnot cycle and Bell Coleman cycle.P-V, P-S, P-H diagrams, Vapor compression cycles- dry and wet compression, superheating and sub cooling. Vapour absorption refrigeration system. Common refrigerants and their properties.Cold storage plants.

Thermodynamic properties of moist air, perfect gas relationship for approximate calculation, adiabatic saturation process, wet bulb temperature and its measurement, psychometric chart and its use, elementary psychometric process.

Air conditioning, principles, type and functions of air conditioning, physiological principles in air conditioning.Humidifiers and dehumidifiers, cooling load and calculations, types of air conditioners, applications.

Practical

Study of vapour compression systems; Study of domestic household refrigerator, Study of domestic water cooler, Study of absorption type refrigeration system, Study of window air conditioner, Tutorials on thermodynamic air cycles, Solving problems of refrigeration on vapour compression and absorption system; Numerical on vapour compression cycle refrigeration system, Study cold storage for fruit and vegetables, Freezing load and time calculations for food materials, Determination of refrigeration parameters (COP) using refrigeration tutor, Determination of refrigeration of refrigeration of refrigeration parameters (COP) using tutor, Numerical on design of air conditioning systems, Estimation of refrigeration requirements in dairy & food plant; Visit to chilling or ice making and cold storage plants.

Lesson Plan – Theory

Lect. No.	Title	Book No.	Chapter / Art No.	Page No	Weightages (%)
1.	Terminology & laws of thermodynamics applied to refrigeration, Principles of refrigeration,	1	1.1-1.37	1-19	15
2	Units of refrigeration, Coefficient of Performance, Heat Engine, Refrigerator and Heat pump including Numericals	1	2.1-2.4	38-40, 44-45	
3	Types of refrigeration systems.	2	2.1-2.8	2.1-2.8	1
4	Mechanical vapour compression, Components of mechanical refrigeration system, p-h chart,	1	4.1-4.4	125-128	20
5-6	Reverse Carnot cycle and Bell Coleman cycle. Vapor compression cycles-dry and wet compression, superheating and sub cooling. (Including Numericals 4.1 - 4.4)	1	2.7 4.5- 4.10	41-43 128-134, 137-138, 146-148	
7	Vapour absorption refrigeration system.	1	7.2-7.4	274-277	15
8	Common refrigerants and their properties.	1	8.1-8.14	294-313	
9-10	Thermodynamic properties of moist air, perfect gas relationship for approximate calculation, adiabatic saturation process, wet bulb temperature and its measurement, (Including numericals)	1	16.1-16.6	467-484	10
11-12	Psychometric chart and its use, elementary psychometric process. (including numericals Humidification and dehumidification processes (excluding numericals)	1	16.7-16.12 16.13- 16.22	484-497	20
13	Cooling load and calculations,	2	19.3-19.8	19.4- 19.12	20
	Cold storage plants.	1	22.13	740	
14-15	Air conditioning, principles, type and functions of air conditioning, types of air conditioners, applications. (excluding numerical)	1	18.1-18.12	549-561	
16	Physiological principles in air conditioning.	1	17.1-17.14	534-544	

Practical Exercises

Ex. No.	Title
1	Study of vapour compression systems;
2	Study of different types of compressors of vapour compression system
3	Study of different types of condensers of vapour compression system
4	Study of different types of evaporators of vapour compression system.
5	Study of different types of expansion devices of vapour compression system
6	Study of domestic household refrigerator and domestic water cooler,
7	Study of domestic domestic water cooler,
8	Numericals on vapour compression refrigeration cycle,
9	Determination of COP using refrigeration tutor.
10	Study of window air conditioner.
11	Determination of COP using Air conditioning tutor
12	Numerical on design of air conditioning systems.
13	Study of cold storage for fruit and vegetables.
14	Study of Freezing load and time calculations for food materials,
15	Estimation of refrigeration requirements in dairy & food plant;
16	Visit to precooling and cold storage plants or ice making plant

Suggested readings Text Books

No.	Author	Title & Year	Publisher
1.	Khurmi R.S. and J.K. Gupta	A Text Book of Refrigeration and Air conditioning (SI Units) 2011	S. Chand and Company Ltd., 7361 Ram Nagar, New Delhi
2.	S.C. Arora and S. Domkumwar	A course in Refrigeration and Air conditioning	Dhanpat Rai and Co. Pvt. Ltd., Nai Sarate, Delhi -6

Reference Books

1	Dossat Roy	J. Principles of Refrigeration	Prentice Hall, Upper Saddle River,
			New Jersy,

Course No. : REE-365Course Title: Bio-Energy Systems: Design and ApplicationsSemester: VICredits : 3(2+1)

Syllabus

Theory

Fermentation processes and its general requirements, an overview of aerobic and anaerobic fermentation processes and their industrial application. Heat transfer processes in anaerobic digestion systems, land fill gas technology and potential. Biomass Production: Wastelands, classification and their use through energy plantation, selection of species, methods of field preparation and transplanting. Harvesting of biomass and coppicing characteristics. Biomass preparation techniques for harnessing (size reduction, densification and drying).

Thermo-chemical degradation. History of small gas producer engine system. Chemistry of gasification. Gas producer — type, operating principle. Gasifier fuels, properties, preparation, conditioning of producer gas. Application, shaft power generation, thermal application and economics. Trans-esterification for biodiesel production. A range of bio-hydrogen production routes. Environmental aspect of bio-energy, assessment of greenhouse gas mitigation potential.

Practical:

Study of anaerobic fermentation system for industrial application, Study of gasification for industrial process heat, Study of biodiesel production unit, Study of biomass densification technique (briquetting, pelletization, and cubing), Integral bio energy system for industrial application, Study of bio energy efficiency in industry and commercial buildings, Study and demonstration of energy efficiency in building, Study of Brayton, Striling and Rankine cycles, Study of modern greenhouse technologies.

Lec. No.	Торіс	Text Book No.	Chapter No.	Article No.	Page No.
1	Fermentation processes and its requirements.	02	07	7.28	429-431
2-3-4-	Aerobic and anaerobic fermentation processes and their industrial application.	03	02	2.1-2.7	10-32
6-7	Biogas generation from industrial waste.	03	9	9.4	134-143
8-9	Heat transfer processes in anaerobic digestion systems, land fill gas technology and potential.	02	10	10.1-10.6	235-248

Teaching Schedule:

10-11	Biomass Production: Wastelands, classification and their use through energy plantation, selection of species, methods of field preparation and			1.1 to 1.6	
12-13	Harvesting of biomass and coppicing characteristics.	04 01	01		1-19
14-15	Biomass preparation techniques for harnessing (size reduction, densification and drying).				
16-17	Thermo-chemical degradation. History of small gas producer engine system.	02	07	7.24.1 to 7.24.4	395-411
18-19	Chemistry of gasification. Gas producer — type, operating principle.	02	07	7.24.1 10 7.24.4	575 711
20-21	Gasifier fuels, properties, preparation, conditioning of producer gas.				
22-23	Application, shaft power generation, thermal application and economics.	04	03	3.1 to 3.9	49-63
24-25	Power generation by using gasifier.				
26-27	Bio-alcohol, Trans-esterification. for biodiesel production.	02	11	11.2	613-635
28-29	Bio-hydrogen production routes.	02	11	11.2	013-033
30-31	Environmental aspect of bio-energy	06	01		06-16
32	Assessment of greenhouse gas mitigation potential.	UU	UI	-	00-10

Practical Exercises:

Ex. No.	Title of Practiclas
1	Study of anaerobic fermentation system for industrial application.
2	Study of gasification for industrial process heat.
3	Study of biodiesel production unit.
4	Study of biomass densification technique (briquetting, pelletization, and
	cubing).
5	Performance evaluation of biomass gasifier for power generation
6	Study of biomass based waste fired dryer
7	Study and demonstration of energy efficiency in building.
8	Performance evaluation of improved cookstove
9	Study of modern greenhouse technologies.
10	Study of various properties of briquettes
11	Visit to Biomass briquetting plant

Text Books:

- 1. Chakraverty A. Biotechnology and Other Alternative Technologies for utilization of Biomass/Agricultural Wastes. Oxford & IBH Publishing Co.PVT.LTD. New Delhi.
- 2. Rai, G.D.Non-Conventional Energy Sources. Khanna Publishers, Delhi.
- 3. Mathur, A.N. & N.S. Rathore. 1992. Biogas Production Management & Utilization. Himanshu Publications, Udaipur.
- 4. Rathor, S. R., Panwar N. L. and Kothari, S. Biomass production and Utilization Technics.

Himanshu Publication.

- 5. V.V.N Kishor. Renewable Energy Engineering Technology.
- 6. Rathor, S. R., Mathur, A. N. and Kothari, S. Alternate Sources of Energy, ICAR Publication, New Delhi.

Reference Books:

- 1. British BioGen. 1997, Anaerobic digestion of farm and food processing practices-Good practice guidelines, London, available on <u>www.britishbiogen.co</u>.UK.
- 2. Butler, S. 2005. Renewable Energy Academy: Training wood energy professionals.
- 3. Centre for biomass energy. 1998. Straw for energy production; Technology-Environment- Ecology. Available: <u>www.ens.dk</u>.

Title: Environmental Science and Disaster

Management

Credit: 3 (2+1)

Semester: I

Syllabus

Theory

Environmental Studies: Scope and importance. Natural Resources: Renewable and non-renewable Natural resources and associated problems. a) Forest resources: Use and overresources exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forest and tribal people. b) Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems. c) Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies. d) Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies. e) Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Case studies. f) Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification. Role of an individual in conservation of natural resources.Equitable use of resources for sustainable lifestyles. Ecosystems: Concept, Structure, function, Producers, consumers, decomposers, Energy flow, ecological succession, food chains, food webs, ecological pyramids. Introduction, types, characteristic features, structure and function of the forest, grassland, desert and aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries). Biodiversity and its conservation:- Introduction, definition, genetic, species & ecosystem diversity and bio-geographical classification of India. Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values. Biodiversity at global, National and local levels, India as a mega-diversity nation. Hot-sports of biodiversity. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts. Endangered and endemic species of India. Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity. Environmental Pollution: definition, cause, effects and control measures of a. Air pollution b. Water pollution c. Soil pollution d. Marine pollution e. Noise pollution f. Thermal pollution g. Nuclear hazards. Solid Waste Management: causes, effects and control measures of urban and industrial wastes. Role of an individual in prevention of pollution.Pollution case studies. Social Issues and the Environment from Unsustainable to Sustainable development, Urban problems related to energy. Water conservation, rain water harvesting, watershed management. Environmental ethics: Issues and possible solutions, climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. dies. Wasteland reclamation.Consumerism and waste products.Environment Protection Act.Air (Prevention and Control of Pollution) Act.Water (Prevention and control of Pollution) Act.Wildlife Protection Act.Forest Conservation Act. Issues involved in enforcement of environmental legislation. Public awareness. Human Population and the Environment: population growth, variation among nations, population explosion, Family Welfare Programme. Environment and human health: Human Rights, Value Education, HIV/AIDS. Women and Child Welfare.Role of Information Technology in Environment and human health.

Disaster Management:

Natural Disasters and nature of natural disasters, their types and effects. Floods, drought, cyclone, earthquakes, landslides, avalanches, volcanic eruptions, Heat and cold waves, Climatic change: global warming, Sea level rise, ozone depletion. Man Made Disasters- Nuclear disasters, chemical disasters, biological disasters, building fire, coal fire, forest fire, oil fire, air pollution, water pollution, deforestation, industrial waste water pollution, road accidents, rail accidents, air accidents, sea accidents. Disaster Management- Effect to migrate natural disaster at national and global levels.International strategy for disaster reduction.Concept of disaster management, national disaster management framework; financial arrangements; role of NGOs, community-based organizations and media.Central, state, district and local administration; Armed forces in disaster response; Disaster response; Police and other organizations.

Practical

Case Studies and Field work. Visit to a local area to document environmental assets river/forest/grassland/hill/mountain, Visit to a local polluted site-Urban/ Rural/ Industrial/ Agricultural, study of common plants, insects, birds and study of simple ecosystems-pond, river, hill slopes, etc. Expected impact of climate change on agricultural production and water resources, Mitigation Strategies, Economics of climate change. Disaster Management introduction, Natural and Manmade Disaster Studies, Informatics for Disaster Management, Quantitative Techniques for Disaster Management Environmental Impact Assessment (EIA) and Disaster Management Disaster Management Policy Environmental Modelling.

Teaching Schedule – Theory with weightages (%)

Lecture	Торіс	Weightage (%)	
1	Environmental Studies: Scope and importance.	03	
2	Natural Resources: Renewable and non-renewable resources Natural resources and associated problems.	03	
3& 4	a) Forest resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forest and tribal people.	03	
5&6	b) Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.	03	
7 & 8	c) Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies.	04	
9	d) Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.	05	
10 & 11	e) Energy resources: Growing energy needs, renewable and non- renewable energy sources, use of alternate energy sources. Case studies.	06	
12 to 14	f) Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification.	04	
15&16	Role of an individual in conservation of natural resources. Equitable use of resources for sustainable lifestyles.	06	
	MID TERM		
17 & 18	& 18Ecosystems: Concept, Structure, function, Producers, consumers, decomposers, Energy flow, ecological succession, food chains, food webs, ecological pyramids. Introduction, types, characteristic features, structure and function of the forest, grassland, desert and aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries).		
19	Biodiversity at global, National and local levels, India as a mega- diversity nation. Hot-sports of biodiversity. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts. Endangered and endemic species of India. Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.	05	
20-21	Environmental Pollution: definition, cause, effects and control measures of a. Air pollution b. Water pollution c. Soil pollution d. Marine pollution e. Noise pollution f. Thermal pollution g. Nuclear hazards. Solid Waste Management: causes, effects and control measures of urban and industrial wastes. Role of an individual in prevention of pollution. Pollution case studies.	05	

22	Social Issues and the Environment from Unsustainable to Sustainable development, Urban problems related to energy. Water conservation, rain water harvesting, watershed management. Environmental ethics: Issues and possible solutions, climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. dies.	05		
23-24	23-24 Wasteland reclamation. Consumerism and waste products. Environment Protection Act. Air (Prevention and Control of Pollution) Act. Water (Prevention and control of Pollution) Act. Wildlife Protection Act. Forest Conservation Act. Issues involved in enforcement of environmental legislation. Public awareness. Human Population and the Environment: population growth, variation among nations, population explosion, Family Welfare Programme.			
25-26	Environment and human health: Human Rights, Value Education, HIV/AIDS. Women and Child Welfare. Role of Information Technology in Environment and human health.	03		
27	<i>Disaster Management:</i> Natural Disasters and nature of natural disasters, their types and effects. Floods, drought, cyclone, earthquakes, landslides, avalanches, volcanic eruptions, Heat and cold waves, Climatic change: global warming, Sea level rise, ozone depletion.	03		
28	Man Made Disasters- Nuclear disasters, chemical disasters, biological disasters, building fire, coal fire, forest fire, oil fire, air pollution, water pollution, deforestation, industrial waste water pollution, road accidents, rail accidents, air accidents, sea accidents.	03		
29-30	Disaster Management- Effect to migrate natural disaster at national and global levels. International strategy for disaster reduction.	03		
31-32	Concept of disaster management, national disaster management framework; financial arrangements; role of NGOs, community- based organizations and media. Central, state, district and local administration; Armed forces in disaster response; Disaster response; Police and other organizations.	03		

Practical Exercise

Ex. No.	Title
1	Case Studies and Field work.
2, 3&4	Visit to a local area to document environmental assets river/forest/grassland/hill/mountain
5& 6	Visit to a local polluted site-Urban
7	Visit to a local polluted Rural
8	Visit to a local polluted site- Industrial

9	Visit to a local polluted site- Agricultural
10	Study of common plants, insects, birds
11	Study of simple ecosystems-pond, river, hill slopes, etc
12	Expected impact of climate change on agricultural production and water resources, Mitigation Strategies, Economics of climate change
13	Disaster Management introduction, Natural and Manmade Disaster Studies
14	Informatics for Disaster Management
15	Quantitative Techniques for Disaster Management Environmental Impact Assessment (EIA)
16	Disaster Management Policy Environmental Modelling

Suggested Readings:

Text Book:

- 1. BharuchaErach. 2005. Text Book of Environmental Studies for Undergraduate Courses. University Grants Commission, University Press, Hyderabad.
- 2. Sharma J P. 2003. Introduction to Environment Science. Lakshmi Publications.
- 3. Chary Manohar and Jaya Ram Reddy. 2004. Principles of Environmental Studies. BS Publishers, Hyderabad.

Reference Book;

- 1. Kaul S N, AshuthoshGautam. 2002. Water and Waste Water Analysis. Days Publishing House, Delhi.
- 2. Gupta P K. 2004. Methods in Environmental Analysis Water. Soil and Air.Agro bios, Jodhpur.
- 3. Climate change.1995: Adaptation and mitigation of climate change-Scientific Technical Analysis Cambridge University Press, Cambridge.
- 4. Sharma, R.K. & Sharma, G. 2005.Natural Disaster. APH Publishing Corporation, New Delhi.
- 5. Husain Majid. 2013. Environment and Ecology: Biodiversity, Climate Change and Disaster Management. Online book.

SEMESTER: VII

Sr.No.	Course No.	Title	Credits			
Student R	EADY Program	mme				
1	GAE- 473 [@]	AI- Industrial Attachment/Internship				
	/ GAE- 474 [@]	(10 Weeks) /	20(0+20)			
		ELP- Experiential Learning on				
		Campus-				
		(10 weeks)				
		OR	· · · ·			
1	GAE- 473 [@]	AI- Industrial Attachment/Internship	10(0+10)			
		(10 Weeks)				
2	GAE- 474 [@]	ELP- Experiential Learning on	10(0+10)			
	Campus-					
		(10 weeks)				
	Total Credit VII: 20 [@] (0+20)					

SEMESTER : VIII

Sr.	Course No.	Title	Credits
Electiv	e Courses **		
		GROUP A: FMPE, PFE, REE	
1	ELE- FMPE-481	3 (1+2)	
2	ELE-PFE-483	Machinery Food Packaging	3 (2+1)
3	ELE-REE-481	Photovoltaic Technology and Systems	3 (2+1)
		GROUP B : IDE, SWCE, FS	
1	ELE-IDE-482	Geo-informatics for Land and Water	3 (2+1)
		Management	
2	ELE-SWCE-481	Floods and Control Measures	3 (2+1)
3	ELE- FS - 481	Greenhouse Structure for protected cultivation	3 (2+1)
Studer	t READY Program	nme	
4	GAE- 485@	Seminar	1 (0+1)
5	GAE- 486 [@]	12 weeks Project Planning & Report Writing-VIII sem.	10(0+10)
		Total Credit Points VIII:	9 (5+4)/(6+3) 11 [@] (0+11)
Acade	mic Status:		

@ Student READY Programme . ** Elective Courses

VIII – Semester Elective : List of Elective Courses in different department

Sr. No.	Dept.	Course No.	Elective Courses (Any 3 Courses)	Credits
1	FMPE	ELE-FMPE 481	Testing of Agricultural Equipment and Machinery	3 (1+2)
2	FMPE	ELE- FMPE 482	Human Engineering and Safety	3 (2+1)
3	FMPE	ELE- FMPE 483	Hydraulic Drives and Controls	3 (2+1)
4	FMPE	ELE- FMPE 484	Plant Protection Appliances	3 (2+1)
5	FMPE	ELE- FMPE 485	Advances in Tractors and Farm Machinery	3 (2+1)
6	SWCE	ELE- SWCE 481	Floods and Control Measures	3 (2+1)
7	SWCE	ELE-SWCE 482	Remote Sensing and GIS Application	3 (2+1)
8	IDE	ELE- IDE 481	Minor Irrigation and Command Area Development	3 (2+1)
9	IDE	ELE- IDE 482	Geo-Informatics for Land and water Management	3 (2+1)
10	IDE	ELE- IDE 483	Lift Irrigation System Design and Management	3 (2+1)
11	IDE	ELE- IDE 484	Environmental Engineering	3 (2+1)
12	IDE	ELE- IDE 485	Landscape Irrigation Design and Management	3 (2+1)
13	PFE	ELE- PFE 481	Food Quality and Control	3 (2+1)
14	PFE	ELE- PFE 482	Process Equipment Design	3 (2+1)
15	PFE	ELE- PFE 483	Food Packaging	3 (2+1)
16	REE	ELE- REE 481	Photovoltaic Technology and Systems	3 (2+1)
17	REE	ELE- REE 482	Waste and By-Products Utilization	3 (2+1)
18	FS	ELE- FS 481	Greenhouse Structure for protected cultivation	3 (2+1)
19	FS	ELE- FS 482	Rural Transport, Water Supply and Sanitation	3 (2+1)

Syallabus

Theory

Introduction of BIS and RNAM testing systems, their functions, activities, advantages of certification. General guidelines on use test code. Types of testing systems currently invoke in country. Testing and evaluation of tillage machinery, Testing and evaluation of seed drill and transplanter. Testing and evaluation of harvesting and threshing machinery, Testing and evaluation of plant protection equipment's, Testing and evaluation of Agril.Tractor.

Practical

Testing of bullock/tractor drawn M.B.plough, disk harrow, tractor drawn cultivator, tractor drawn rotavator, bullock/tractor drawn seed drill/Planter, bullock/tractor drawn pudler, preparation of nursery for paddy transplanting. Testing of self propelled power tiller operated paddy transplanter, manually operated weeders, (dryland/ paddy), manually operated fruit harvesters, sickle, manually operated knapsack sprayer, portable engine operated sprayer, self propelled reaper, power thresher, stationary engine, visit to tractor testing centre.

Unit No.	Lect. No	Topic/s	Weightag es%	
I	1	Introduction of BIS and RNAM testing systems, General	25	
		guidelines on use of test code		
	2	Types of testing systems		
	13-16	Tractor testing general regulations, terminology, testing		
		procedure, PTO performance, drawbar performance,		
		hydraulic lift, safety test.		
II	3	Testing of tillage machinery. Introduction, testing procedure,	25	
		laboratory test, and field test of plough and cultivator.		
	4	Testing of rotavator and puddler, testing procedure.		
		Laboratory test, and field test.		
III	5 Testing of sowing, planting machinery, types of test. General		25	
		condition, testing procedure, laboratory test, and field test of		
		tractor drawn planter.		
	6	Testing of paddy transplanter. Scope, terminology.		
	7	Testing of manually operated weeders, general condition,		
		testing procedure, laboratory test, and field test.		
IV	10-11	Testing of plant protection equipments: type of test for	25	
		sprayer, testing methods, laboratory test, and field test.		
	8-9	Testing of harvesting equipments, sickles and reapers, testing		
		procedure, laboratory test, and field test.		
	12	Testing of power thresher, terminology, type of tests.		
		Performance test.		

Teaching schedule- Theory with weightages (%)

Practical Exercises

Exercises No.	Title
1-2	Testing of bullock/tractor drawn M.B. Plough
3-4	Testing of disc harrow
5-6	Testing of tractor drawn cultivator
7-8	Testing of tractor drawn rotavator
9-10	Testing of bullock/tractor drawn seed drill/Planter
11-12	Testing of bullock/tractor drawn pudler
13	Preparation of Nursery for paddy transplanter
14-15	Testing of self propelled power tiller operated paddy transplanter
16	Testing of manually operated weeders, (dryland/paddy)
17	Testing of manually operated fruit harvesters
18	Testing of sickle
19-20	Testing of manually operated knapsack sprayer
21-22	Testing of portable engine operated sprayer
23-24	Testing of self propelled reaper
25-26	Testing of power thresher
27-28	Testing of stationary engine
29-32	Visit to tractor testing centre

Suggested readings

Text Books:

- 1. Testing and evaluation of Agril. Machinery by M.L.Mehta, S.R.Verma, S.K. Mishra and V.K.Sharma. Daya publishing house, Delhi-2005 edition.
- 2. RNAM Test Codes and Procedures for Farm Machinery, Technical Series No.12, 2nd Edition, 1995.

I.S. Specifications for Animal Drawn Puddler. UDC : 631. Manak Bhavan, 9, BahadurShahaZafar Marg. New Delhi-1, February 1966.

Course No :	ELE PFE 483	Course Title :	Food Packaging
Semester :	: VIII	Credits :	: 3 (2+1)

Course Content

Theory

Factors affecting shelf life of food material during storage, Interactions of spoilage agents with environmental factors as water, oxygen, light, pH, etc. and general principles of control of the spoilage agents; Difference between food infection, food intoxication and allergy. Packaging of foods, requirement, importance and scope, frame work of packaging strategy, environmental considerations, Packaging systems, types: flexible and rigid; retail and bulk; levels of packaging; special solutions and packaging machines, technical packaging systems and data management packaging systems, Different types of packaging materials, their key properties and applications, Metal cans, manufacture of two piece and three piece cans, Plastic packaging, different types of polymers used in food packaging and their barrier properties. manufacture of plastic packaging materials, profile extrusion, blown film/ sheet extrusion, blow molding, extrusion blow molding, injection blow molding, stretch blow molding, injection molding. Glass containers, types of glass used in food packaging, manufacture of glass and glass containers, closures for glass containers. Paper and paper board packaging, paper and paper board manufacture process, modification of barrier properties and characteristics of paper/ boards. Relative advantages and disadvantages of different packaging materials; Effect of these materials on packed commodities. Nutritional labelling on packages, CAS and MAP, Shrink and cling packaging, Vacuum and gas packaging; Active packaging, Smart packaging, Packaging requirement for raw and processed foods, and their selection of packaging materials, Factors affecting the choice of packaging materials, Disposal and recycle of packaging waste, Printing and labelling, Lamination, Package testing: Testing methods for flexible materials, rigid materials and semi rigid materials; Tests for paper (thickness, bursting strength, breaking length, stiffness, tear resistance, folding endurance, ply bond test, surface oil absorption test, etc.), plastic film and laminates (thickness, tensile strength, gloss, haze, burning test to identify polymer, etc.), aluminium foil (thickness, pin holes, etc.), glass containers (visual defects, colour, dimensions, impact strength, etc.), metal containers (pressure test, product compatibility, etc.)

Practical

Identification of different types of packaging materials, Determination of tensile/ compressive strength of given material/package, To perform different destructive and non-destructive tests for glass containers, Vacuum packaging of agricultural produces, Determination of tearing strength of paper board, Measurement of thickness of packaging materials, To perform grease-resistance test in plastic pouches, Determination of bursting strength of packaging material, Determination of water-vapour transmission rate, Shrink wrapping of various horticultural produce, Testing of chemical resistance of packaging materials, Determination of drop test of food package, Experiment on bottling of fruit products, Aseptic packaging, Modified atmospheric packaging and Visit to packaging industries.

Lesson Plan – Theory

Lect. No.	Title	Book No.	Chapter /ArticleNo.	Page No.	Weight age (%)
1.	Introduction,	7	1	5-6	
	Definition and Functions of packaging	3	1.5	8-9	
2 - 4	Factors affecting shelf life of food material during storage,	7	4	15-16	
	Interactions of spoilage agents with environmental factors as water, oxygen, light, pH, etc. and general principles of control of the spoilage agents;	1	24.1	466 - 474	10
5 - 6	Packaging of foods, requirement, importance and scope,	3	1.3 & 1.4	4-8	10
	frame work of packaging strategy,	3	1.6	9	
	Environmental considerations,	1	24.5	502-503	
7 - 8	Packaging systems, types: flexible and rigid; retail and bulk;	3	7.1	174-178	10
	Levels of packaging;	7	3	10	
9 - 10	Different types of packaging materials,	1	24.2	474	
	their key properties and applications,	3	1.7.1.3	16-17	
11.	Metal cans, manufacture of two piece and three piece cans,	1	24.2.2	474 - 477	
12 - 13	Plastic packaging, different types of polymers used in food packaging and their barrier properties.	1	24.2.4	481-483	
	Manufacture of plastic packaging materials, profile extrusion, blown film/ sheet extrusion, blow molding, extrusion blow molding, injection blow molding, stretch blow molding, injection molding.	1	24.2.5	487-490	
14 - 15	Glass containers, types of glass used in food packaging, manufacture of glass and glass containers, closures for glass containers.	1	24.2.3	478-481	
16 - 17	Paper and paper board packaging, paper and paper board manufacture process, modification of barrier properties and characteristics of paper/ boards.	1	24.2.6	490-494	40
	Lamination,	1		484-485]
18.	Effect of these materials on packed commodities.	1	24.4	501	
19 - 20.	Printing and labelling, Nutritional labelling on packages,	1	24.3	498-499	
21 - 22	MAP,	7	7	22-24	
23.	Shrink packaging,	2		615-620	

Lect. No.	Title	Book No.	Chapter /ArticleNo.	Page No.	Weight age (%)
24.	Vacuum packaging;	2		593-594	
25.	Active packaging and Smart packaging,	1	24.2.8	497-498	15
		3	9.1	282-284	
26.	Packaging requirement for raw and processed foods, and their selection of packaging materials,	1		463-465	
27.	Factors affecting the choice of packaging materials,	3	7.10	222-224	10
28.	Disposal and recycle of packaging waste,	3	1.7.1.6	26-28	
29.	Package testing: Testing methods for flexible materials, rigid materials and semi rigid materials;	7	31	105	
30.	Tests for paper (thickness, bursting strength, breaking length, stiffness, tear resistance, folding endurance, ply bond test, surface oil absorption test, etc.),	4	8.2.2	-	
31.	Tests for Plastic film and laminates (thickness, tensile strength, gloss, haze, burning test to identify polymer, etc.), Tests for aluminium foil (thickness, pin holes, etc.),	4	8.2.2	-	15
32.	Tests for Glass containers (visual defects, colour, dimensions, impact strength, etc.), Tests for metal containers (pressure test, product compatibility, etc.)	7	32	106-107	

Practical Exercises

No.	Title
1	Identification of different types of packaging materials
2	Determination of tensile/ compressive strength of given material/package
3	To perform different destructive and non-destructive tests for glass containers
4	Vacuum packaging of agricultural produces
5	Determination of tearing strength of paper board
6	Measurement of thickness of packaging materials
7	To perform grease-resistance test in plastic pouches
8	Determination of bursting strength of packaging material
9	Determination of water-vapour transmission rate

No.	Title
10	Shrink wrapping of various horticultural produce
11	Testing of chemical resistance of packaging materials
12	Determination of drop test of food package
13	Experiment on bottling of fruit products
14	Aseptic packaging
15	Modified atmospheric packaging
16	Visit to packaging industries

Suggested readings

Text Books

Book	Title	Author	Publisher	Year
No. 1.	Food Processing Technology-Principle and Practices. Second Edition	P. Fellow	Wood head Publishing Ltd. Cambridge	2000
2.	Modern Food Packaging	Compiled by Mrs. M. C. Dordi	Indian Institute of Packaging, E-2, MIDC, Indl. Area, Andheri (E), Mumbai400 0093	1998
3.	Food Packaging Technology,	Edited by Coles R., D. McDowell and M.J. Kirwan,	Blackwell Publishing Ltd, CRC Press USA	2003
4.	Handbook of Food Engineering Practice,	Edited by E. Rotstein, R. P. Singh, & K. J. Valentas	CRC Press Boca Raton New York	2003
5	Handbook of food packaging	Frank Albert Paire.		
6	Packaging of food products	A. P. Vaidya	Indian Institute of Packaging, E-2, MIDC, Indl. Area, Andheri (E), Mumbai 400 093	
7.	Food Packaging – Study Material (e - Lecture Notes)	KaleemullahS.	Department of Food Engineering, College of Food Science & Technology, (ANGRAU) Pulivendula	

Course No	: ELE-REE-481	Course Title	: Photovoltaic Technology and
		Systems	
Semester : VIII		Credit : 3(2+1))

Syllabus:

Theory:

Solar PV Technology: Advantages, Limitations, Current Status of PV technology, SWOT analysis of PV technology. Types of Solar Cell, Wafer based Silicon Cell, Thin film amorphous silicon cell Thin Cadmium Telluride (CdTe) Cell, Copper Indium Gallium Selenide (CiGS) Cell, Thin film crystalline silicon solar cell. Solar Photo Voltaic Module: Solar cell, solar module, solar array, series & parallel connections of cell, mismatch in cell, fill factor, effect of solar radiation and temperature on power output of module, I-V and power curve of module. Balance of Solar PV system: Introduction to batteries, battery classification, lead acid battery, Nicked Cadmium battery, comparison of batteries, battery parameters, Charge controller: types of charge controller, function of charge controller, PWM type, MPPT type charge controller, Converters: DC to DC converter and DC to AC type converter. Application of Solar PV system. Solar home lighting system, solar lantern, solar fencing, solar street light, solar water pumping system, Roof top solar photovoltaic power plant and smart grid.

Practical:

Study of V-I characteristics of solar PV system, smart grid technology and application, manufacturing technique of solar array, different DC to DC and DC to AC converter, domestic solar lighting system, various solar module technologies, safe measurement of PV modules electrical characteristics and Commissioning of complete solar PV system.

Teaching Schedule:

Lec. No	Торіс	Text Book No	Chapter No	Article No	Page No
1-2	Solar PV Technology: Advantages, Limitations	01 03	05 02	5.6 2.3	192-193 31-33
3	Current Status of PV technology	02	08	8.13	171-174
4	SWOT analysis of PV technology.	02	08	8.2	148
5-6-7	Types of Solar Cell, Wafer based Silicon Cell, Thin film amorphous silicon cell Thin Cadmium Telluride (CdTe) Cell, Copper Indium Gallium Selenide (CiGS) Cell, Thin film crystalline silicon solar cell.	03	01	1.5	16-20
8-9	Solar Photo Voltaic Module: Solar solar module, solar array,	03	12	12.1	
10-11	Series & parallel connections of cell, Mismatch in cell, fill factor,	03	12	12.2	324-346
12-13	Effect of solar radiation and temperature on power output of module.	03	12	12.3	
14-15	I-V and power curve of module.	03	12	12.4, 12.5	
16-17	Balance of Solar PV system: Introduction to batteries, battery classification, lead acid battery, Cadmium battery.	03	13	13.1 13.2	347-363
18-19	Comparison of batteries, battery parameters.	03	13	13.3	
20-21	Charge controller: types of charge controller, function of charge	03	13	13.4 13.5	363-381
22-23	PWM type, MPPT type charge controller.	03	13	13.6	505-561
24-25	Converters: DC to DC converter and DC to AC type converter.	03	13	13.7	
26-28	Application of Solar PV system. Solar home lighting system, solar lantern, solar fencing,	03	14	14.1 to	391-
29-30	Solar street light, Solar water	03	14	1	
31-32	Roof top solar photovoltaic power and smart grid.	03	14	1	

Practical Exercises: Sr. No. **Title of Practicals** 1. Study of V-1 characteristics of solar PV system 2. Study of smart grid technology and application 3. Study of manufacturing technique of solar array 4. Study of different DC to DC and DC to AC converter Study of domestic solar lighting system 5. Design and estimation of domestic solar home lighting system. 6. 7. Study of solar PV water pumping system 8. Design of roof top solar system for domestic/industrial application

Study of SPV system estimation softwares/ Calculators

Suggested readings

9.

10.

Text Books / Reference Books:

- 1. Rai GD. 1998. Non-conventional Sources of Energy. Khanna Pub.
- Rathore N.S., Kurchania A.K., Panwar N.L. 2006. Renewable Energy: Theory & Practice, Himanshu Publications.
- Solanki C.S. 2011. Solar Photovoltaic: Fundamentals, Technologies and Applications, PHI Learning Private Ltd.
- 4. Meinel & Meinel. Applied Solar Energy.

Visit to SPV power plant.

5. Derrick, Francis and Bokalders, Solar Photo-voltaic Products.

ELE-IDE-482Course Title:- Geo-informatics for land and water management

Semester:- VIII Credit:- 3 = 2+1

Syllabus:

Theory:

Remote Sensing : Definition, stages in Remote Sensing, Remote Sensing systems, Remote Sensing Sensors and Resolutions, Remote Sensing Platforms, Electro Magnetic Radiation, Concept of Signature & Multispectral Concept, Spectral Reflectance of Vegetation, Soil and Water, Introduction to Visual Image Interpretation : Fundamental of Visual Image Interpretation and Elements of Image Interpretation, Digital Image Processing: Introduction, Image Rectification and Restoration, Image Enhancement, Contrast Manipulation, Image Classification: Supervised Classification.

Introduction of GIS : GIS definitions, components of GIS, GIS software's and their products, GIS data types and structures, Data input and editing, Attribute data management, Co-ordinate system, data and map projections, GIS data analysis : vector based and raster based, GPS: Introduction and applications, Applications of Remote Sensing for Land cover and land use mapping and water resources.

Modeling : Simulation and Modeling use in water resource management: What is Model, Simulation, Application in water Recourse management: Types of models: Physical models, Mathematical models, Conceptual model, Hybrid Models, Introduction to some models, Study of SWAT Model : Introduction, Overview , Land phase of Hydrological cycle (component list only), Routing Phase of the Hydrological cycle (component list only), Model input Overview (list of input), Model output Overview (list of output) , Study of CROPWAT Model :Description of CropWat MODEL, Input /output of Model, Calculation method used by model, Study of Aqua Crop Model: Introduction to AquaCrop, The AquaCrop model , Practical applications, The calculation scheme of AquaCrop, Input requirement and Limitations.

Practical:

Introduction to Remote Sensing software, Introduction to GIS software, Study of GPS and DGPS systems, LULC mapping using RS and GIS, Estimation and mapping of WR of different crops using RS and GIS, Estimation of evapotranspiration: conventional methods and RS based methods, Water feature mapping using RS, Application of SWAT Model for Irrigation Management, Estimation of crop-water requirement and Irrigation requirement using CROPWAT model, Application of Aqua-Crop Model for Planning and management in Agriculture.

Lec.	Торіс	Book	Topic No.	Page	Weightages
No.	Горіс	No.	Topic No.	No.	(%)
UNI	[-I				
1-4	Remote Sensing :				30
	Definition, stages in Remote Sensing,	2	1.1	1-2	
	Remote Sensing systems		1.3	6	
	Remote Sensing Sensors and Resolutions		5.1, 5.3, 5.4,	129-143	
			5.5, 5.6		
	Remote Sensing Platforms		1.3.2	8-9	
	Electro Magnetic Radiation		2.0	25-27	
	Concept of Signature & Multispectral		1.2, 1.2.1	3-6	
	Concept				
	Spectral Reflectance of Vegetation, Soil	1	1.4	17-21	
	and Water				
5-6.	Introduction to Visual Image	1	4.1, 4.2	190-194	
	Interpretation : Fundamental of Visual				
	Image Interpretation and Elements of				
	Image Interpretation				
7-8	Digital Image Processing: Introduction,	1	7.1, 7.2, 7.3,	470-559	
	Image Rectification and Restoration,		7.4, 7.7, 7.8,		
	Image Enhancement, Contrast		7.11		
	Manipulation, Image Classification:				
	Supervised Classification and				
	Unsupervised Classification.				
	1				
UNI	[- II		I		
9	Introduction of GIS : GIS definitions,	3		1-25	30
	components of GIS, GIS software's and	4		4-5	
	their products.				
10-	GIS data types and structures	4		5-11	-
12	Data input and editing,	3		60-69	
	Attribute data management,	3		102-122	
	Co-ordinate system, data and map	3		82-89	
	projections.	3		35-45	
13	GIS data analysis : vector based and	4		234-277	
	raster based.				
14	GPS: Introduction and applications	2		32-35	
15-	Applications of Remote Sensing for Land	2	11.3, 11.4	358-363	
15- 16	cover and land use mapping and water	2	11.3, 11.4	550-505	
10	resources				
	163041653				

UNI	ſ-III				
17-	Modeling :		Notes to be		40
19	Simulation and Modeling use in water		circulate		
	Recourse management:				
	What is Model, Simulation, Application				
	in water Recourse management:				
	Types of models: Physical models,				
	Mathematical models, Conceptual model,				
	Hybrid Models				
	Introduction to some models				
20-	Study of SWAT Model :			1-2	
24	Introduction	5		6-9	
	Overview				
	Land phase of Hydrological cycle				
	(component list only)			9-21	
	Routing Phase of the Hydrological cycle	6	Chapter31		
	(component list only)			303-312	
	Model input Overview (list of input)		Chapter31		
	Model output Overview (list of			313-335	
	output)				
25-	Study of CROPWAT Model:	7			
28	Description of CropWat model			1	
	Input /output of Model			2	
	Calculation method used by model			2-3	
29-	Study of Aqua Crop Model:	8			
32	Introduction to AquaCrop			1	
	The AquaCrop model			1	
	Practical applications			2	
	The calculation scheme of AquaCrop			2-3	
	Input requirement			4	
	Limitations			4	

Practical Exercises

Ex. No	Title
1-2	Introduction to Remote Sensing software's
3-4	Introduction to GIS software's
5-6	Study of GPS and DGPS systems
7	LULC mapping using RS and GIS
8	Estimation and mapping of WR of different crops using RS and GIS.
9-10	Estimation of evapotranspiration: conventional methods and RS based methods.

11	Water feature mapping using RS
12-13	Application of SWAT Model for Irrigation Management
14	Estimation of crop-water requirement and Irrigation requirement using CROPWAT model.
15-16	Application of Aqua-Crop Model for Planning and management in Agriculture.

Suggested Readings :

- 1. Lillesand T.M. and Kiefer R.W.-2009, Remote Sensing and Image Interpretation, John Wiley and Sons, New Delhi (www.wileyindia.com)
- 2. George Joseph. Fundamentals of Remote Sensing, 2009. Universities Press Pvt. Ltd., Hyderabad (www.universitiespress.com)
- 3. Lan Heywood, Sarah Comelius, Steve Carver and Srinivasa Raju., 2006. An Introduction of Geographical Information Systems. Person Education in South Asia, Published by : Dorling Kindersley (India) Pvt. Ltd.
- 4. Kang-Tsung Chang, Introduction to Geographical Information System, 2008, McGraw Hill. (www.tatamcgrawhill.com)
- 5. SWAT Theoretical Documentation version 2009 (Document Download link http://swat.tamu.edu/documentation/)
- 6. SWAT User manual version 2000 (Document Download link <u>http://swat.tamu.edu/documentation/</u>)
- 7. Cropwat Documentation, (Document Download link <u>http://agromet-cost.bo.ibimet.cnr.it/fileadmin/cost718/repository/cropwat.pdf</u>) Software download link<u>http://www.fao.org/land-water/databases-and-software/cropwat/en/</u>
- 8. 4.AquaCrop training handbooks:FAO Document Download link: <u>http://www.fao.org/3/a-i6051e.pdf</u>
- 9. P.A.Burrough and R.A. McDonnell, Principles of Geographical Information System, 2000, Oxford, University
- 10. Jhon R. Jensesn Introductory Digital Image Processing: A Remote Sensing Prospecting, Prentice-Hall, Englewood Cliffs, New Jersey.

Course No : ELE-SWCE-481

Credits : 3 (2+1)

Course Title : Floods and Control Measures Semester: VIII

Syllabus Theory

Floods- causes of occurrence, flood classification- probable maximum flood, standard project flood, design flood, flood estimation-methods of estimation ; estimation of flood peakrational method, empirical methods, unit hydrograph method. Statistics in hydrology, flood frequency methods-log normal, Gumbel's extreme value, Log -Pearson type-III distribution, depth-area-duration analysis. Flood forecasting. Flood routing-channel routing, Muskingum method, reservoir routing, ModifiedPul's method. Flood control-history of flood control, structural and non-structural measures of flood control, storage and detention reservoirs, levees, channel improvement. Gully erosion and its control structures-design and implementation. Ravine control measures, River training works, planning of flood control projects and their economics. Earthen embankments - functions, classification-hydraulic and rolled fill dams- homogeneous, zoned and diaphragm type, foundation requirements, grouting, seepage through dams, flow net and its properties, seepage pressure, seepage line in composite earth embankments, drainage filters, piping and its causes. Design and construction of earthen dam, stability of earthen embankments against failure by tension, overturning, sliding etc., stability of slopes- analysis of failure by different methods. Subsurface dams-site selection and constructional features. Check dasms-Small earthen embankment-types and design criteria.

Practical

Determination of flood stage-discharge relationship in a watershed. Determination of flood peak-area relationships. Determination of frequency distribution functions for extreme flood values using Gumbel's method. Determination of confidence limits of the flood peak estimates for Gumbel's extreme value distribution. Determination of frequency distribution functions for extreme flood values using log-Pearson Type-III distribution. Determination of probable maximum flood, standard project flood and spillway design flood. Design of levees for flood control. Design of jetties. Study of vegetative and structural measures for gully stabilization. Design of gully/ravine control structures and cost estimation. Designing, planning and cost- benefit analysis of a flood control project. Study of different types, materials and design considerations of earthen dams. Determination of the position of phreatic line in earth dams for various conditions, stability analysis of earthen dams against head water pressure, foundation shear, sudden draw down condition etc. Stability of slopes of earth dams by friction circle and other methods. Construction

of flow net for isotropic and anisotropic media. Computation of seepage by different methods. Determination of settlement of earth dam. Input-output-storage relationships by reservoir routing. Visit to sites of earthen dam and water harvesting structures.

Lectur	Торіс	Boo	Article No.	Page	Wegt
e No		k No		No.	(%)
1	Definition & causes of floods, design	7	7.48, 7.49	445-446	25
	flood, SPF, PMF and its importance	2	7.1	245	
2	Estimating design flood and flood flows	7	7.50, 7.50.1	446-452	
		2	7.2, 7.3	245-252	
3	Envelope curves	1		676-678	
		7	7.50.2	452-453	
4	Methods of flood frequency, confidence	1		704-721	
	bands				
5.	Flood frequency studies	2	7.6, 7.7	255-265	
6	Unit hydrograph method	7	7.50.4	477-478	
7.	Depth-Area-Duration analysis	1		734-736	
8	Flood forecasting: Need, problems,	1		768-772	15
	limitations				
9	River forecasting procedure, flood	1		772-778	
	forecasting methods	2		312-313	
10	Flood routing : channel routing,	1	11.4	576-588	
	Muskingum method, crest segment routing	2	8.5	291-296	
11	Reservoir routing, Modified Pul's method	1	11.5	590-592,	
				601-602	
		2	8.3	281-284	
12	Flood control : history, structural and non-	2	8.10, 8.11	309-314	
	structural measures for flood control				
13	Gully control structures : temporary check	3	15.8, 15.9	756-764	30
	dams				
14	Permanent structures for gully control	4	26.8, 26.9	517-528	
15	Design of chute spillway, design of drop	4	26.10, 26.11,	529-537	
	inlets		26.11		
16	Ravine reclamation	5	4.9	184-189	
		3	15.3-15.8	742-756	
17	Control & training of rivers, objectives,	7	8.5, 8.5.1,	500-503	
	classification, methods of river training,		8.5.2, 8.5.3		
	marginal embankments				
18	Guide banks	7	8.5.3(2)	503-509	
19	Earthen embankments: introduction, types,	7	20.1,20.2,20.3	1045-	
	methods of construction	5	16.1	1047	
				553-555	
20	Foundation design	6	128	211-212	
21	Grouting	6	129	212-218	
22	Seepage through embankments	4	27.5	545-547	
23	Flow net & its properties	5	16.6	565-567	
24	Seepage line in composite earth	7	20.12.1-	1060-	
	embankments		20.12.3	1070	
25	Drainage filters, Piping & its causes	7	20.14,	1090-	
			20.7.2	1092	30

Teaching Schedule – Theory with weightages (%)

				1053- 1054	(Lecture No.19 to
26	Design of earthen dams	3	16.7	819-821	32)
27, 28	Stability analysis of slopes, stability of	7	20.8, 20.9	1055-	
& 29	foundation against shear			1057	
			20.13,	1071-	
			20.13.3,	1072	
			20.13.4	1076-	
				1077	
			20.13.5,	1077-	
			20.13.6	1080	
			20.13.7	1080-	
				1082	
30	Small earthen embankments	4	27.4	542-544	
31	Subsurface dams*: site selection &	-	-	_	
	constructional features				
32	Planning of flood control projects and their economics*	-	-	-	

*Topics may be covered from any other suitable book/source.

Practical Exercises

Exercise No.	Title			
1.	Study of flood-stage-discharge and flood peak-area relationships of watershed.			
2.	Determination of frequency distribution functions and confidence bands by Gumbel's method.			
3.	Determination of frequency distribution functions by Log Pearson Type-III method.			
4.	Determination of design flood, standard project flood and probable maximum flood.			
5.	Determination of channel level by flood routing by Muskingum methods			
б.	Determination of reservoir level by Modified Puls Method			
7.	Determination of reservoir levels by Graphical method.			
8.	Determination of reservoir inflow, outflow and storage by flood routing.			
9.	Design of flood control levees and guide banks. (Ref. Book No.7, p. 501).			
10.	Study of vegetative measures of gully control.			
11.	Study of structural measures of gully control			
12.	Design and cost estimation of permanent gully control structures.			
13.	Design of earth dam and determination of phreatic (seepage) line.			
14.	Analysis of stability of slopes and foundation shear safety of earth dam.			
15.	Construction of flow net and computation of seepage of earth dam.			
16.	Study of Designation for check dams			

Suggested readings

Text Books:

- 1. Mutreja K. N. 1986, Applied Hydrology, Tata McGraw-Hill Publishing Co, Delhi.
- 2. Subramanya K., 2008, Engineering Hydrology, 3rdEdi., Tata McGraw-Hill Publishing Co, Delhi.
- Michael, A. M. and T.P. Ojha2003, Principles of Agricultural Engineering Volume, 4thEdi., Jain Brothers, New Delhi.
- 4. Murthy, V.V.N. 2002, Land and Water Management Engineering, 4thEdi.,Kalyani Publishers, New Delhi.
- 5. Suresh R. 2014 Soil and Water Conservation Engineering, Standard Publisher Distributors, New Delhi.
- 6. Bureau of Reclamation, 1987, Design of Small Dams, US Department of Interior, Washington D.C.
- 7. Garg S.K., 2009, Irrigation Engineering and Hydraulic Structures, Khanna Publishers Pvt. Ltd, New Delhi.

Course No.	:	ELE -FS-481		Credits	:	3(2+1)
Course Title	:	Green House Structures Protected Cultivation	For	Semester	:	VIII

<u>Syllabus</u>

Theory:

Protected cultivation: Introduction, History, origin, development, National and International Scenario, components of green house, perspective, Types of green houses, polyhouses /shed nets, Cladding materials, Plant environment interactions – principles of limiting factors, solar radiation and transpiration, greenhouse effect, light, temperature, relative humidity, carbon dioxide enrichment, Design and construction of green houses – site selection, orientation, design, construction, design for ventilation requirement using exhaust fan system, selection of equipment, Greenhouse cooling system – necessity, methods – ventilation with roof and side ventilators, evaporative cooling, different shading material fogging, combined fogging and fan-pad cooling system, design of cooling system, maintenance of cooling and ventilation systems, pad care etc. Greenhouse heating – necessity, components, methods, design of heating system. Root media – types – soil and soil less media, composition, estimation, preparation and disinfection, bed preparation. Planting techniques in green house cultivation. Economic analysis.

Practicals:

Estimation of material requirement for construction of greenhouse; Estimation of material requirement for preparation of root media; Root media preparation, bed preparation and disinfections; Study of different planting techniques; Greenhouse heating; Study of different greenhouse environment control instruments; Economic analysis of greenhouses and net houses; Visit to greenhouses.

Lec.	Topics to be covered	Book	Article	Weighta
No.		No.	No.	ge, %
1	Greenhouse technology – historical background,	1, 2, 3	General	25%
	global status of greenhouse, scope and importance.			
2-4	Constituents of greenhouse environment	1	3.1 to 3.6	
5-6	Classification of greenhouses	1	4.1 to 4.6	25%
7-10	Greenhouse construction	1	5.1 to 5.8	
11-12	Methods of greenhouse construction	2	3.3	
13-14	Greenhouse heating systems	1	6.1 to 6.3	25%
15-17	Greenhouse cooling systems	1	6.5 to	
			6.12	
18-20	Steady state analysis of a greenhouse	2	8.1 to 8.4	
21-22	Root media	1	7.1 to 7.6	25%
23-24	Root substrate pasteurization	3	-	
25-26	Instrumentation and automation for greenhouses	1	9.1 to 9.3	
27	Periodic maintenance of greenhouses	-	General	

Teaching Schedule

Practical Exercises:

SN	Title		
1.	Visit to commercial greenhouse complex / structure		
2.	To measure greenhouse environmental parameters		
	(temp., RH, Solar radiations, CO2, air velocity etc) and prepare profiles of these parameters.		
3.	Problems on greenhouse light requirements		
4.	Problems on CO2 enrichment.		
5.	Problems on calculation of greenhouse heat requirements.		
6.	Problems on design of fan pad system.		
7.	Problems on design of winter cooling system.		
8.	Problems on greenhouse root media.		
9.	Problems on greenhouse steady state analysis.		
10.	Structural design of simple rectangular gable type GI pipe greenhouse structure (i.e. To find		
	sizes of purlins, rafters and columns for desired wind speed pressure).		

Suggested readings

Author Year		Title	Publisher
Text Book			
Vilas M. Salokhe and Ajay K. Sharma	2006	Greenhouse Technology and Applications	Agrotech publishing academy Udaipur (Raj.)
G. N. Tiwari	2003	Greenhouse technology for controlled environment	Narosa publishing house, New Delhi / Mumbai
Paul V. Nelson	1998	Greenhouse operation and management	Prentice Hall, New Jersey – 07458
Reference Books			
Singh Brahma and Balraj Singh	2014	Advances in protected cultivation	New India Publishing Company, New Delhi
Sharma P.	2007	Precision Farming	Daya Publishing House New Delhi